statistical field theory
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 24)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Pratik Khandagale ◽  
Carmel Majidi ◽  
Kaushik Dayal

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Arsham Ghavasieh ◽  
Massimo Stella ◽  
Jacob Biamonte ◽  
Manlio De Domenico

AbstractComplex systems are large collections of entities that organize themselves into non-trivial structures, represented as networks. One of their key emergent properties is robustness against random failures or targeted attacks —i.e., the networks maintain their integrity under removal of nodes or links. Here, we introduce network entanglement to study network robustness through a multiscale lens, encoded by the time required for information diffusion through the system. Our measure’s foundation lies upon a recently developed statistical field theory for information dynamics within interconnected systems. We show that at the smallest temporal scales, the node-network entanglement reduces to degree, whereas at extremely large scales, it measures the direct role played by each node in keeping the network connected. At the meso-scale, entanglement plays a more important role, measuring the importance of nodes for the transport properties of the system. We use entanglement as a centrality measure capturing the role played by nodes in keeping the overall diversity of the information flow. As an application, we study the disintegration of empirical social, biological and transportation systems, showing that the nodes central for information dynamics are also responsible for keeping the network integrated.


Author(s):  
Jean Zinn-Justin

Some equilibrium properties in statistical quantum field theory (QFT), that is, relativistic QFT at finite temperature are reviewed. Study of QFT at finite temperature is motivated by cosmological problems, high energy heavy ion collisions, and speculations about possible phase transitions, also searched for in numerical simulations. In particular, the situation of finite temperature phase transitions, or the limit of high temperature (an ultra-relativistic limit where the temperature is much larger than the physical masses of particles) are discussed. The concept of dimensional reduction emerges, in many cases, statistical properties of finite-temperature QFT in (1, d − 1) dimensions can be described by an effective classical statistical field theory in (d − 1) dimensions. Dimensional reduction generalizes a property already observed in the non-relativistic example of the Bose gas, and indicates that quantum effects are less important at high temperature. The corresponding technical tools are a mode-expansion of fields in the Euclidean time variable, singling out the zero modes of boson fields, followed by a local expansion of the resulting (d − 1)-dimensional effective field theory (EFT). Additional physical intuition about QFT at finite temperature in (1, d−1) dimensions can be gained by considering it as a classical statistical field theory in d dimensions, with finite size in one dimension. This identification makes an analysis of finite temperature QFT in terms of the renormalization group (RG), and the theory of finite-size effects of the classical theory, possible. These ideas are illustrated with several simple examples, the φ4 field theory, the non-linear σ-model, the Gross–Neveu model and some gauge theories.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Gianluigi Zangari del Balzo

An amendment to this paper has been published and can be accessed via the original article.


2021 ◽  
Vol 182 (3) ◽  
Author(s):  
Gernot Münster ◽  
Manuel Cañizares Guerrero

AbstractRoughening of interfaces implies the divergence of the interface width w with the system size L. For two-dimensional systems the divergence of $$w^2$$ w 2 is linear in L. In the framework of a detailed capillary wave approximation and of statistical field theory we derive an expression for the asymptotic behaviour of $$w^2$$ w 2 , which differs from results in the literature. It is confirmed by Monte Carlo simulations.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marco Panero ◽  
Antonio Smecca

Abstract We present a high-precision Monte Carlo study of the classical Heisenberg model in four dimensions. We investigate the properties of monopole-like topological excitations that are enforced in the broken-symmetry phase by imposing suitable boundary conditions. We show that the corresponding magnetization and energy-density profiles are accurately predicted by previous analytical calculations derived in quantum field theory, while the scaling of the low-energy parameters of this description questions an interpretation in terms of particle excitations. We discuss the relevance of these findings and their possible experimental applications in condensed-matter physics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kurt Langfeld

AbstractThe pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) suggests a novel type of disease spread dynamics. We here study the case where infected agents recover and only develop immunity if they are continuously infected for some time τ. For large τ, the disease model is described by a statistical field theory. Hence, the phases of the underlying field theory characterise the disease dynamics: (i) a pandemic phase and (ii) a response regime. The statistical field theory provides an upper bound of the peak rate of infected agents. An effective control strategy needs to aim to keep the disease in the response regime (no ‘second’ wave). The model is tested at the quantitative level using an idealised disease network. The model excellently describes the epidemic spread of the SARS-CoV-2 outbreak in the city of Wuhan, China. We find that only 30% of the recovered agents have developed immunity.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Gianluigi Zangari del Balzo

Abstract Background Stochastic processes leading voltage-gated ion channel dynamics on the nerve cell membrane are a sufficient condition to describe membrane conductance through statistical mechanics of disordered and complex systems. Results Voltage-gated ion channels in the nerve cell membrane are described by the Ising model. Stochastic circuit elements called “Ising Neural Machines” are introduced. Action potentials are described as quasi-particles of a statistical field theory for the Ising system. Conclusions The particle description of action potentials is a new point of view and a powerful tool to describe the generation and propagation of nerve impulses, especially when classical electrophysiological models break down. The particle description of action potentials allows us to develop a new generation of devices to study neurodegenerative and demyelinating diseases as Multiple Sclerosis and Alzheimer’s disease, even integrated by connectomes. It is also suitable for the study of complex networks, quantum computing, artificial intelligence, machine and deep learning, cryptography, ultra-fast lines for entanglement experiments and many other applications of medical, physical and engineering interest.


2020 ◽  
Author(s):  
Gianluigi Zangari del Balzo

Abstract Background Stochastic processes leading voltage-gated ion channel dynamics on the nerve cell membrane are a sufficient condition to describe membrane conductance through statistical mechanics of disordered and complex systems.Results Voltage-gated ion channels in the nerve cell membrane are described by the Ising model. Stochastic circuital elements called ”Ising machines” are introduced. Action potentials are described as quasi-particles of a statistical field theory for the Ising system.Conclusions The particle description of action potentials is a new powerful tool to describe the generation and propagation of nerve impulses. We thus have the opportunity to exploit another useful point of view to describe the generation and propagation of nerve impulses, especially when classical electrophysiological models break down. Moreover, the particle description allows us to develop new hardware and software devices based on general and theoretical physics to study neurodegenerative and demyelinating diseases as Multiple Sclerosis and Alzheimer’s disease, even integrated by connectomes. It is also suitable for the study of complex networks, quantum computing, artificial intelligence, machine and deep learning, cryptography, ultra-fast lines for entanglement experiments and many other applications of medical, physical and engineering interest.


Sign in / Sign up

Export Citation Format

Share Document