Development of a single-tube duplex EvaGreen real-time PCR for the detection and identification of EHV-1 and EHV-4

2014 ◽  
Vol 98 (9) ◽  
pp. 4179-4186 ◽  
Author(s):  
Zhe Hu ◽  
Chao Zhu ◽  
Hao Chang ◽  
Wei Guo ◽  
Diqiu Liu ◽  
...  
2010 ◽  
Vol 16 (6) ◽  
pp. 704-710 ◽  
Author(s):  
A.M.C. Bergmans ◽  
M. van der Ent ◽  
A. Klaassen ◽  
N. Böhm ◽  
G.I. Andriesse ◽  
...  

2006 ◽  
Vol 259 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Denis Portnoï ◽  
Natacha Sertour ◽  
Elisabeth Ferquel ◽  
Martine Garnier ◽  
Guy Baranton ◽  
...  

2015 ◽  
Vol 21 (1-2) ◽  
Author(s):  
N. Czotter ◽  
E. Manduláné Farkas ◽  
R. Lózsa ◽  
I. Ember ◽  
G. Szûcsné Varga ◽  
...  

Several grapevine pathogens are disseminated by propagating material as systemic, but latent infections. Their detection and identification have a basic importance in the production and handling of propagating stocks. Thus several sensitive and reliable diagnostic protocols mostly based on molecular techniques have been developed. Of these methods quantitative real-time PCR (q-PCR) has recently got an emerging importance. Here we collected primer data for the detection and identification of grapevine pathogens which are important in the production of propagating stocks by q-PCR. Additional novel techniques that use DNA amplification, hybridization and  sequencing are also briefly reviewed.


2018 ◽  
Vol 59 (1) ◽  
pp. 582 ◽  
Author(s):  
Paulo J. M. Bispo ◽  
Samaneh Davoudi ◽  
Matthew L. Sahm ◽  
Ai Ren ◽  
John Miller ◽  
...  

Author(s):  
Kundan Tandel ◽  
Mahadevan Kumar ◽  
G.S. Bhalla ◽  
S.P.S. Shergill ◽  
Vijaya Swarnim ◽  
...  

2019 ◽  
Vol 31 (5) ◽  
pp. 714-718 ◽  
Author(s):  
Kristin A. Clothier ◽  
Simone Stoute ◽  
Andrea Torain ◽  
Beate Crossley

Avibacterium paragallinarum is the causative agent of infectious coryza, a highly contagious respiratory disease in chickens. Given its fastidious nature, this bacterium is difficult to recover and identify, particularly from locations colonized by normal bacterial flora. Standard PCR methods have been utilized for detection but are labor-intensive and not feasible for high-throughput testing. We evaluated a real-time PCR (rtPCR) method targeting the HPG-2 region of A. paragallinarum, and validated a high-throughput extraction for this assay. Using single-tube extraction, the rtPCR detected 4 A. paragallinarum (ATCC 29545T and 3 clinical) isolates with a limit of detection (LOD) of 10 cfu/mL and a PCR efficiency of 89–111%. Cross-reaction was not detected with 33 non– A. paragallinarum, all close relatives from the family Pasteurellaceae. Real-time PCR testing on extracts of 66 clinical samples (choana, sinus, or trachea) yielded 98.2% (35 of 36 on positives, 30 of 30 on negatives) agreement with conventional PCR. Duplicate samples tested in a 96-well format extraction in parallel with the single-tube method produced equivalent LOD on all A. paragallinarum isolates, and 96.8% agreement on 93 additional clinical samples extracted with both procedures. This A. paragallinarum rtPCR can be utilized for outbreak investigations and routine monitoring of susceptible flocks.


2018 ◽  
Vol 19 (10) ◽  
pp. 837-846 ◽  
Author(s):  
Tingting Zhang ◽  
Ying Xiao ◽  
Yanxia Wang ◽  
Yanwei Li ◽  
Lirong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document