Elimination of carbon catabolite repression in Clostridium acetobutylicum—a journey toward simultaneous use of xylose and glucose

2015 ◽  
Vol 99 (18) ◽  
pp. 7579-7588 ◽  
Author(s):  
Mark Bruder ◽  
Murray Moo-Young ◽  
Duane A. Chung ◽  
C. Perry Chou
2018 ◽  
Vol 115 ◽  
pp. 41-51 ◽  
Author(s):  
Opemipo Esther Fasoyin ◽  
Bin Wang ◽  
Mengguang Qiu ◽  
Xiaoyun Han ◽  
Kuang-Ren Chung ◽  
...  

2021 ◽  
Vol 297 ◽  
pp. 113371
Author(s):  
Grazia Policastro ◽  
Marco Giugliano ◽  
Vincenzo Luongo ◽  
Raffaele Napolitano ◽  
Massimiliano Fabbricino

2017 ◽  
Vol 5 ◽  
pp. 19-25 ◽  
Author(s):  
Christopher W. Johnson ◽  
Paul E. Abraham ◽  
Jeffrey G. Linger ◽  
Payal Khanna ◽  
Robert L. Hettich ◽  
...  

2004 ◽  
Vol 70 (9) ◽  
pp. 5238-5243 ◽  
Author(s):  
Ana M. López-Contreras ◽  
Krisztina Gabor ◽  
Aernout A. Martens ◽  
Bernadet A. M. Renckens ◽  
Pieternel A. M. Claassen ◽  
...  

ABSTRACT Clostridium acetobutylicum ATCC 824 is a solventogenic bacterium that grows heterotrophically on a variety of carbohydrates, including glucose, cellobiose, xylose, and lichenan, a linear polymer of β-1,3- and β-1,4-linked β-d-glucose units. C. acetobutylicum does not degrade cellulose, although its genome sequence contains several cellulase-encoding genes and a complete cellulosome cluster of cellulosome genes. In the present study, we demonstrate that a low but significant level of induction of cellulase activity occurs during growth on xylose or lichenan. The celF gene, located in the cellulosome-like gene cluster and coding for a unique cellulase that belongs to glycoside hydrolase family 48, was cloned in Escherichia coli, and antibodies were raised against the overproduced CelF protein. A Western blot analysis suggested a possible catabolite repression by glucose or cellobiose and an up-regulation by lichenan or xylose of the extracellular production of CelF by C. acetobutylicum. Possible reasons for the apparent inability of C. acetobutylicum to degrade cellulose are discussed.


mSystems ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Matthew D. Servinsky ◽  
Rebecca L. Renberg ◽  
Matthew A. Perisin ◽  
Elliot S. Gerlach ◽  
Sanchao Liu ◽  
...  

ABSTRACTBacterial fermentation of carbohydrates from sustainable lignocellulosic biomass into commodity chemicals by the anaerobic bacteriumClostridium acetobutylicumis a promising alternative source to fossil fuel-derived chemicals. Recently, it was demonstrated that xylose is not appreciably fermented in the presence of arabinose, revealing a hierarchy of pentose utilization in this organism (L. Aristilde, I. A. Lewis, J. O. Park, and J. D. Rabinowitz, Appl Environ Microbiol 81:1452–1462, 2015,https://doi.org/10.1128/AEM.03199-14). The goal of the current study is to characterize the transcriptional regulation that occurs and perhaps drives this pentose hierarchy. Carbohydrate consumption rates showed that arabinose, like glucose, actively represses xylose utilization in cultures fermenting xylose. Further, arabinose addition to xylose cultures led to increased acetate-to-butyrate ratios, which indicated a transition of pentose catabolism from the pentose phosphate pathway to the phosphoketolase pathway. Transcriptome sequencing (RNA-Seq) confirmed that arabinose addition to cells actively growing on xylose resulted in increased phosphoketolase (CA_C1343) mRNA levels, providing additional evidence that arabinose induces this metabolic switch. A significant overlap in differentially regulated genes after addition of arabinose or glucose suggested a common regulation mechanism. A putative open reading frame (ORF) encoding a potential catabolite repression phosphocarrier histidine protein (Crh) was identified that likely participates in the observed transcriptional regulation. These results substantiate the claim that arabinose is utilized preferentially over xylose inC. acetobutylicumand suggest that arabinose can activate carbon catabolite repression via Crh. Furthermore, they provide valuable insights into potential mechanisms for altering pentose utilization to modulate fermentation products for chemical production.IMPORTANCEClostridium acetobutylicumcan ferment a wide variety of carbohydrates to the commodity chemicals acetone, butanol, and ethanol. Recent advances in genetic engineering have expanded the chemical production repertoire ofC. acetobutylicumusing synthetic biology. Due to its natural properties and genetic engineering potential, this organism is a promising candidate for converting biomass-derived feedstocks containing carbohydrate mixtures to commodity chemicals via natural or engineered pathways. Understanding how this organism regulates its metabolism during growth on carbohydrate mixtures is imperative to enable control of synthetic gene circuits in order to optimize chemical production. The work presented here unveils a novel mechanism via transcriptional regulation by a predicted Crh that controls the hierarchy of carbohydrate utilization and is essential for guiding robust genetic engineering strategies for chemical production.


2003 ◽  
Vol 278 (14) ◽  
pp. 11849-11857 ◽  
Author(s):  
Michel Flipphi ◽  
Peter J. I. van de Vondervoort ◽  
George J. G. Ruijter ◽  
Jaap Visser ◽  
Herbert N. Arst ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document