Transcriptional Regulation
Recently Published Documents


TOTAL DOCUMENTS

11950
(FIVE YEARS 3831)

H-INDEX

204
(FIVE YEARS 52)

2021 ◽  
Vol 7 (44) ◽  
Author(s):  
Xin Yang ◽  
Xingwu Wang ◽  
Zhiming Li ◽  
Shoufu Duan ◽  
Huan Li ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guilherme M. Oliveira ◽  
Attila Oravecz ◽  
Dominique Kobi ◽  
Manon Maroquenne ◽  
Kerstin Bystricky ◽  
...  

AbstractThe spatiotemporal organization of chromatin influences many nuclear processes: from chromosome segregation to transcriptional regulation. To get a deeper understanding of these processes, it is essential to go beyond static viewpoints of chromosome structures, to accurately characterize chromatin’s diffusion properties. We present GP-FBM: a computational framework based on Gaussian processes and fractional Brownian motion to extract diffusion properties from stochastic trajectories of labeled chromatin loci. GP-FBM uses higher-order temporal correlations present in the data, therefore, outperforming existing methods. Furthermore, GP-FBM allows to interpolate incomplete trajectories and account for substrate movement when two or more particles are present. Using our method, we show that average chromatin diffusion properties are surprisingly similar in interphase and mitosis in mouse embryonic stem cells. We observe surprising heterogeneity in local chromatin dynamics, correlating with potential regulatory activity. We also present GP-Tool, a user-friendly graphical interface to facilitate usage of GP-FBM by the research community.


2021 ◽  
Author(s):  
Petra Redekop ◽  
Emanuel Sanz-Luque ◽  
Yizhong Yuan ◽  
Gaelle Villain ◽  
Dimitris Petroutsos ◽  
...  

In nature, photosynthetic organisms are exposed to different light spectra and intensities depending on the time of day and atmospheric and environmental conditions. When photosynthetic cells absorb excess light, they induce non-photochemical quenching to avoid photo-damage and trigger expression of photoprotective genes. In this work, we used the green alga Chlamydomonas reinhardtii to assess the impact of light intensity, light quality, wavelength, photosynthetic electron transport and CO2 on induction of the photoprotective genes (LHCSR1, LHCSR3 and PSBS) during dark-to-light transitions. Induction (mRNA accumulation) occurred at very low light intensity, was independently modulated by blue and UV-B radiation through specific photoreceptors, and only LHCSR3 was strongly controlled by CO2 levels through a putative enhancer function of CIA5, a transcription factor that controls genes of the carbon concentrating mechanism. We propose a model that integrates inputs of independent signaling pathways and how they may help the cells anticipate diel conditions and survive in a dynamic light environment.


2021 ◽  
Vol 7 (4) ◽  
pp. 67
Author(s):  
Merve Kuru-Schors ◽  
Monika Haemmerle ◽  
Tony Gutschner

The cohesin complex is a multi-subunit protein complex initially discovered for its role in sister chromatid cohesion. However, cohesin also has several other functions and plays important roles in transcriptional regulation, DNA double strand break repair, and chromosome architecture thereby influencing gene expression and development in organisms from yeast to man. While most of these functions rely on protein–protein interactions, post-translational protein, as well as DNA modifications, non-coding RNAs are emerging as additional players that facilitate and modulate the function or expression of cohesin and its individual components. This review provides a condensed overview about the architecture as well as the function of the cohesin complex and highlights its multifaceted interplay with both short and long non-coding RNAs.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Su Yan ◽  
Yan Xu ◽  
Xiao-Wei Yu

AbstractThe filamentous fungus Trichoderma reesei has been widely used for cellulase production that has extensive applications in green and sustainable development. Increasing costs and depletion of fossil fuels provoke the demand for hyper-cellulase production in this cellulolytic fungus. To better manipulate T. reesei for enhanced cellulase production and to lower the cost for large-scale fermentation, it is wise to have a comprehensive understanding of the crucial factors and complicated biological network of cellulase production that could provide new perspectives for further exploration and modification. In this review, we summarize recent progress and give an overview of the cellular process of cellulase production in T. reesei, including the carbon source-dependent cellulase induction, complicated transcriptional regulation network, and efficient protein assembly and trafficking. Among that, the key factors involved in cellulase production were emphasized, shedding light on potential perspectives for further engineering.


2021 ◽  
Vol 22 (21) ◽  
pp. 11416
Author(s):  
Maite Caus ◽  
Àuria Eritja ◽  
Milica Bozic

Obesity is a major global health problem and is associated with a significant risk of renal function decline. Obesity-related nephropathy, as one of the complications of obesity, is characterized by a structural and functional damage of the kidney and represents one of the important contributors to the morbidity and mortality worldwide. Despite increasing data linking hyperlipidemia and lipotoxicity to kidney injury, the apprehension of molecular mechanisms leading to a development of kidney damage is scarce. MicroRNAs (miRNAs) are endogenously produced small noncoding RNA molecules with an important function in post-transcriptional regulation of gene expression. miRNAs have been demonstrated to be important regulators of a vast array of physiological and pathological processes in many organs, kidney being one of them. In this review, we present an overview of miRNAs, focusing on their functional role in the pathogenesis of obesity-associated renal pathologies. We explain novel findings regarding miRNA-mediated signaling in obesity-related nephropathies and highlight advantages and future perspectives of the therapeutic application of miRNAs in renal diseases.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2230
Author(s):  
Dominique Hirsz ◽  
Laura E. Dixon

Temperature is a critical environmental signal in the regulation of plant growth and development. The temperature signal varies across a daily 24 h period, between seasons and stochastically depending on local environmental events. Extracting important information from these complex signals has led plants to evolve multiple temperature responsive regulatory mechanisms at the molecular level. In temperate cereals, we are starting to identify and understand these molecular mechanisms. In addition, we are developing an understanding of how this knowledge can be used to increase the robustness of crop yield in response to significant changes in local and global temperature patterns. To enable this, it is becoming apparent that gene regulation, regarding expression and post-transcriptional regulation, is crucial. Large transcriptomic studies are identifying global changes in spliced transcript variants and regulatory non-coding RNAs in response to seasonal and stress temperature signals in many of the cereal crops. Understanding the functions of these variants and targets of the non-coding RNAs will greatly increase how we enable the adaptation of crops. This review considers our current understanding and areas for future development.


2021 ◽  
Vol 22 (21) ◽  
pp. 11337
Author(s):  
Lorena Magraner-Pardo ◽  
Dino Gobelli ◽  
Miguel A. de la Fuente ◽  
Tirso Pons ◽  
María Simarro

The FASTK family of proteins have been recently reported to play a key role in the post-transcriptional regulation of mitochondrial gene expression, including mRNA stability and translation. Accumulated studies have provided evidence that the expression of some FASTK genes is altered in certain types of cancer, in agreement with the central role of mitochondria in cancer development. Here, we obtained a pan-cancer overview of the genomic and transcriptomic alterations of FASTK genes. FASTK, FASTKD1, FASTKD3 and FASTKD5 showed the highest rates of genetic alterations. FASTK and FASTKD3 alterations consisted mainly of amplifications that were seen in more than 8% of ovarian and lung cancers, respectively. FASTKD1 and FASTKD5 were the most frequently mutated FASTK genes, and the mutations were identified in 5–7% of uterine cancers, as well as in 4% of melanomas. Our results also showed that the mRNA levels of all FASTK members were strongly upregulated in esophageal, stomach, liver and lung cancers. Finally, the protein-protein interaction network for FASTK proteins uncovers the interaction of FASTK, FASTKD2, FASTKD4 and FASTKD5 with cancer signaling pathways. These results serve as a starting point for future research into the potential of the FASTK family members as diagnostic and therapeutic targets for certain types of cancer.


Sign in / Sign up

Export Citation Format

Share Document