penicillium canescens
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 17)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Vol 193 ◽  
pp. 113012
Author(s):  
Yi Zang ◽  
Yihua Gong ◽  
Zhengyi Shi ◽  
Changxing Qi ◽  
Chunmei Chen ◽  
...  

Author(s):  
Anna S. Dotsenko ◽  
Yury A. Denisenko ◽  
Aleksandra M. Rozhkova ◽  
Ivan N. Zorov ◽  
Olga G. Korotkova ◽  
...  

2021 ◽  
Vol 9 (10) ◽  
pp. 2051
Author(s):  
Camille Marchal ◽  
Joaquim Germain ◽  
Muriel Raveton ◽  
Blandine Lyonnard ◽  
Cindy Arnoldi ◽  
...  

Polychlorinated biphenyls (PCBs) belong to the organic pollutants that are toxic to humans and harmful to environments. Numerous studies dealing with the impact of PCBs on soil microorganisms have focused on bacterial communities. The effects of PCBs on fungal communities in three different PCB-polluted soils from former industrial sites were investigated using high-throughput sequencing of the internal transcribed spacer 1 region. Significant differences in fungal alpha diversity were observed mainly due to soil physico-chemical properties. PCBs only influenced the richness of the fungal communities by increasing it. Fungal composition was rather strongly influenced by both PCBs and soil properties, resulting in different communities associated with each soil. Sixteen Ascomycota species were present in all three soils, including Stachybotrys chartarum, Fusarium oxysporum, Penicillium canescens, Penicillium chrysogenum,Penicillium citrosulfuratum and Penicillium brevicompactum, which are usually found in PCB-polluted soils, and Fusarium solani, Penicillium canescens, Penicillium citrosulfuratum and Penicillium chrysogenum, which are known PCB degraders. This study demonstrated that PCBs influence the richness and the composition of fungal communities. Their influence, associated with that of soil physico-chemical properties, led to distinct fungal communities, but with sixteen species common to the three soils which could be considered as ubiquitous species in PCB-polluted soils.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1348
Author(s):  
Susan G. Karp ◽  
Dmitrii O. Osipov ◽  
Margarita V. Semenova ◽  
Alexandra M. Rozhkova ◽  
Ivan N. Zorov ◽  
...  

This study aimed at evaluating different enzyme combinations in the saccharification of sugarcane bagasse (SCB), soybean husks (SBH) and oil palm empty fruit bunches (EFB) submitted to mild acid and alkaline pretreatments. Enzyme pools were represented by B1 host (crude cellulase/xylanase complexes of Penicillium verruculosum); B1-XylA (Penicillium canescens xylanase A expressed in P. verruculosum B1 host strain); and F10 (Aspergillus niger β-glucosidase expressed in B1 host strain). Enzyme loading was 10 mg protein/g dry substrate and 40 U/g of β-glucosidase (F10) activity. SCB was efficiently hydrolyzed by B1 host after alkaline pretreatment, yielding glucose and reducing sugars at 71 g/L or 65 g/100 g of dry pretreated substrate and 91 g/L or 83 g/100 g, respectively. B1 host performed better also for EFB, regardless of the pretreatment method, but yields were lower (glucose 27–30 g/L, 25–27 g/100 g; reducing sugars 37–42 g/L, 34–38 g/100 g). SBH was efficiently saccharified by the combination of B1 host and B1-XylA, yielding similar concentrations of reducing sugars for both pretreatments (92–96 g/L, 84–87 g/100 g); glucose recovery, however, was higher with alkaline pretreatment (81 g/L, 74 g/100 g). Glucose and reducing sugar yields from initial substrate mass were 42% and 54% for SCB, 36% and 42–47% for SBH and 16–18% and 21–26% for EFB, respectively.


Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 475
Author(s):  
Larisa Shcherbakova ◽  
Alexandra Rozhkova ◽  
Dmitrii Osipov ◽  
Ivan Zorov ◽  
Oleg Mikityuk ◽  
...  

This paper reports the first results on obtaining an enzyme preparation that might be promising for the simultaneous decontamination of plant feeds contaminated with a polyketide fusariotoxin, zearalenone (ZEN), and enhancing the availability of their nutritional components. A novel ZEN-specific lactonohydrolase (ZHD) was expressed in a Penicillium canescens strain PCA-10 that was developed previously as a producer of different hydrolytic enzymes for feed biorefinery. The recombinant ZHD secreted by transformed fungal clones into culture liquid was shown to remove the toxin from model solutions, and was able to decontaminate wheat grain artificially infected with a zearalenone-producing Fusarium culmorum. The dynamics of ZEN degradation depending on the temperature and pH of the incubation media was investigated, and the optimal values of these parameters (pH 8.5, 30 °C) for the ZHD-containing enzyme preparation (PR-ZHD) were determined. Under these conditions, the 3 h co-incubation of ZEN and PR-ZHD resulted in a complete removal of the toxin from the model solutions, while the PR-ZHD addition (8 mg/g of dried grain) to flour samples prepared from the infected ZEN-polluted grain (about 16 µg/g) completely decontaminated the samples after an overnight exposure.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Elena O. Vidyagina ◽  
Natalia M. Subbotina ◽  
Vladimir A. Belyi ◽  
Vadim G. Lebedev ◽  
Konstantin V. Krutovsky ◽  
...  

Abstract Background Recombinant carbohydrases genes are used to produce transgenic woody plants with improved phenotypic traits. However, cultivation of such plants in open field is challenging due to a number of problems. Therefore, additional research is needed to alleviate them. Results Results of successful cultivation of the transgenic aspens (Populus tremula) carrying the recombinant xyloglucanase gene (sp-Xeg) from Penicillium canescens in semi-natural conditions are reported in this paper for the first time. Change of carbohydrate composition of wood was observed in transgenic aspens carrying the sp-Xeg gene. The transformed transgenic line Xeg-2-1b demonstrated accelerated growth and increased content of cellulose in wood of trees growing in both greenhouse and outside in comparison with the control untransformed line Pt. The accelerated growth was observed also in the transgenic line Xeg-1-1c. Thicker cell-wall and longer xylem fiber were also observed in both these transgenic lines. Undescribed earlier considerable reduction in the wood decomposition rate of the transgenic aspen stems was also revealed for the transformed transgenic lines. The decomposition rate was approximately twice as lower for the transgenic line Xeg-2-3b in comparison with the control untransformed line Pt. Conclusion A direct dependence of the phenotypic and biochemical traits on the expression of the recombinant gene sp-Xeg was demonstrated. The higher was the level of the sp-Xeg gene expression, the more pronounced were changes in the phenotypic and biochemical traits. All lines showed phenotypic changes in the leave traits. Our results showed that the plants carrying the recombinant sp-Xeg gene do not demonstrate a decrease in growth parameters in semi-natural conditions. In some transgenic lines, a change in the carbohydrate composition of the wood, an increase in the cell wall thickness, and a decrease in the rate of decomposition of wood were observed.


2020 ◽  
Author(s):  
Elena O. Vidyagina ◽  
Natalia M. Subbotina ◽  
Vladimir A. Belyi ◽  
Vadim G. Lebedev ◽  
Konstantin V. Krutovsky ◽  
...  

Abstract Background: Recombinant carbohydrases genes are used to produce transgenic woody plants with improved phenotypic traits. However, cultivation of such plants in open field is challenging due to by a number of problems. Therefore, additional research is needed to alleviate them. Results: Results of successful cultivation of the transgenic aspens ( Populus tremula ) carrying the recombinant xyloglucanase gene ( sp-Xeg ) from Penicillium canescens in semi-natural conditions are reported in this paper for the first time. Change of carbohydrate composition of wood was observed in transgenic aspens carrying the sp-Xeg gene. The transformed transgenic line Xeg-2-1b demonstrated accelerated growth and increased content of cellulose in wood of trees growing in both greenhouse and outside in comparison with the control untransformed line Pt. The accelerated growth was observed also in the transgenic line Xeg-1-1c. Thicker cell-wall and longer xylem fiber were also observed in both these transgenic lines. Undescribed earlier considerable reduction in the wood decomposition rate of the transgenic aspen stems was also revealed for the transformed transgenic lines. The decomposition rate was approximately twice as lower for the transgenic line Xeg-2-3b in comparison with the control untransformed line Pt. Conclusion: A direct dependence of the phenotypic and biochemical traits on the expression of the recombinant gene sp-Xeg was demonstrated. The higher was the level of the sp-Xeg gene expression, the more markedly were changes in the phenotypic and biochemical traits. All lines showed phenotypic changes in the leave traits. Our results showed that the plants carrying the recombinant sp-Xeg gene do not demonstrate a decrease in growth parameters in semi-natural conditions. In some transgenic lines, a change in the carbohydrate composition of the wood, an increase in the cell wall thickness and a decrease in the rate of decomposition of wood were observed.


2020 ◽  
Author(s):  
Elena O. Vidyagina ◽  
Natalia M. Subbotina ◽  
Vladimir A. Belyi ◽  
Vadim G. Lebedev ◽  
Konstantin V. Krutovsky ◽  
...  

Abstract Background: Recombinant carbohydrases genes are used to produce transgenic woody plants with improved phenotypic traits. However, cultivation of such plants in open field is challenging due to by a number of problems. Therefore, additional research is needed to alleviate them. Results: Results of successful cultivation of the transgenic aspens (Populus tremula) carrying the recombinant xyloglucanase gene (sp-Xeg) from Penicillium canescens in semi-natural conditions are reported in this paper for the first time. Change of carbohydrate composition of wood was observed in transgenic aspens carrying the sp-Xeg gene. The transformed transgenic line Xeg-2-1b demonstrated accelerated growth and increased content of cellulose in wood of trees growing in both greenhouse and outside in comparison with the control untransformed line Pt. The accelerated growth was observed also in the transgenic line Xeg-1-1c. Thicker cell-wall and longer xylem fiber were also observed in both these transgenic lines. Undescribed earlier considerable reduction in the wood decomposition rate of the transgenic aspen stems was also revealed for the transformed transgenic lines. The decomposition rate was approximately twice as lower for the transgenic line Xeg-2-3b in comparison with the control untransformed line Pt. Conclusion: A direct dependence of the phenotypic and biochemical traits on the expression of the recombinant gene sp-Xeg was demonstrated. The higher was the level of the sp-Xeg gene expression, the more markedly were changes in the phenotypic and biochemical traits. All lines showed phenotypic changes in the leave traits. Our results showed that the plants carrying the recombinant sp-Xeg gene do not demonstrate a decrease in growth parameters in semi-natural conditions. In some transgenic lines, a change in the carbohydrate composition of the wood, an increase in the cell wall thickness and a decrease in the rate of decomposition of wood were observed.


Fitoterapia ◽  
2020 ◽  
Vol 142 ◽  
pp. 104522 ◽  
Author(s):  
Abd. Malik ◽  
Hamidreza Ardalani ◽  
Syariful Anam ◽  
Laura Mikél McNair ◽  
Kresten J.K. Kromphardt ◽  
...  

2020 ◽  
Vol 86 (10) ◽  
Author(s):  
Yuan Zhang ◽  
Xiuli Hao ◽  
Adriana M. Garcia-Lemos ◽  
Inês Nunes ◽  
Mette H. Nicolaisen ◽  
...  

ABSTRACT This study investigated the effects of long-term soil fertilization on the composition and potential for phosphorus (P) and nitrogen (N) cycling of bacterial communities associated with hyphae of the P-solubilizing fungus Penicillium canescens. Using a baiting approach, hyphosphere bacterial communities were recovered from three soils that had received long-term amendment in the field with mineral or mineral plus organic fertilizers. P. canescens hyphae recruited bacterial communities with a decreased diversity and an increased abundance of Proteobacteria relative to what was observed in soil communities. As core bacterial taxa, Delftia and Pseudomonas spp. were present in all hyphosphere samples irrespective of soil fertilization. However, the type of fertilization showed significant impacts on the diversity, composition, and distinctive taxa/operational taxonomic units (OTUs) of hyphosphere communities. The soil factors P (Olsen method), exchangeable Mg, exchangeable K, and pH were important for shaping soil and hyphosphere bacterial community compositions. An increased relative abundance of organic P metabolism genes was found in hyphosphere communities from soil that had not received P fertilizers, which could indicate P limitation near the fungal hyphae. Additionally, P. canescens hyphae recruited bacterial communities with a higher abundance of N fixation genes than found in soil communities, which might imply a role of hyphosphere communities for fungal N nutrition. Furthermore, the relative abundances of denitrification genes were greater in several hyphosphere communities, indicating an at least partly anoxic microenvironment with a high carbon-to-N ratio around the hyphae. In conclusion, soil fertilization legacy shapes P. canescens hyphosphere microbiomes and their functional potential related to P and N cycling. IMPORTANCE P-solubilizing Penicillium strains are introduced as biofertilizers to agricultural soils to improve plant P nutrition. Currently, little is known about the ecology of these biofertilizers, including their interactions with other soil microorganisms. This study shows that communities dominated by Betaproteobacteria and Gammaproteobacteria colonize P. canescens hyphae in soil and that the compositions of these communities depend on the soil conditions. The potential of these communities for N and organic P cycling is generally higher than that of soil communities. The high potential for organic P metabolism might complement the ability of the fungus to solubilize inorganic P, and it points to the hyphosphere as a hot spot for P metabolism. Furthermore, the high potential for N fixation could indicate that P. canescens recruits bacteria that are able to improve its N nutrition. Hence, this community study identifies functional groups relevant for the future optimization of next-generation biofertilizer consortia for applications in soil.


Sign in / Sign up

Export Citation Format

Share Document