glycoside hydrolase family
Recently Published Documents


TOTAL DOCUMENTS

704
(FIVE YEARS 198)

H-INDEX

51
(FIVE YEARS 6)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Wataru Saburi ◽  
Takanori Nihira ◽  
Hiroyuki Nakai ◽  
Motomitsu Kitaoka ◽  
Haruhide Mori

AbstractGlycoside phosphorylases (GPs), which catalyze the reversible phosphorolysis of glycosides, are promising enzymes for the efficient production of glycosides. Various GPs with new catalytic activities are discovered from uncharacterized proteins phylogenetically distant from known enzymes in the past decade. In this study, we characterized Paenibacillus borealis PBOR_28850 protein, belonging to glycoside hydrolase family 94. Screening of acceptor substrates for reverse phosphorolysis, in which α-d-glucose 1-phosphate was used as the donor substrate, revealed that the recombinant PBOR_28850 produced in Escherichia coli specifically utilized d-galactose as an acceptor and produced solabiose (β-d-Glcp-(1 → 3)-d-Gal). This indicates that PBOR_28850 is a new GP, solabiose phosphorylase. PBOR_28850 catalyzed the phosphorolysis and synthesis of solabiose through a sequential bi-bi mechanism involving the formation of a ternary complex. The production of solabiose from lactose and sucrose has been established. Lactose was hydrolyzed to d-galactose and d-glucose by β-galactosidase. Phosphorolysis of sucrose and synthesis of solabiose were then coupled by adding sucrose, sucrose phosphorylase, and PBOR_28850 to the reaction mixture. Using 210 mmol lactose and 280 mmol sucrose, 207 mmol of solabiose was produced. Yeast treatment degraded the remaining monosaccharides and sucrose without reducing solabiose. Solabiose with a purity of 93.7% was obtained without any chromatographic procedures.


Author(s):  
Xiaodan Li ◽  
Xiangfeng Meng ◽  
Tijn C. de Leeuw ◽  
Evelien M. te Poele ◽  
Tjaard Pijning ◽  
...  

2021 ◽  
Author(s):  
Xinxin Li ◽  
Dimitrios Kouzounis ◽  
Mirjam A. Kabel ◽  
Ronald P. de Vries ◽  
Adiphol Dilokpimol

iScience ◽  
2021 ◽  
pp. 103666
Author(s):  
Peicheng Sun ◽  
Xinxin Li ◽  
Adiphol Dilokpimol ◽  
Bernard Henrissat ◽  
Ronald P. de Vries ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Laura E. Zeugner ◽  
Karen Krüger ◽  
Jimena Barrero-Canosa ◽  
Rudolf I. Amann ◽  
Bernhard M. Fuchs

AbstractGene clusters rich in carbohydrate-active enzymes within Flavobacteriia genera provide a competitiveness for their hosts to degrade diatom-derived polysaccharides. One such widely distributed polysaccharide is glucuronomannan, a main cell wall component of diatoms. A conserved gene cluster putatively degrading glucuronomannan was found previously among various flavobacterial taxa in marine metagenomes. Here, we aimed to visualize two glycoside hydrolase family 92 genes coding for α-mannosidases with fluorescently-labeled polynucleotide probes using direct-geneFISH. Reliable in situ localization of single-copy genes was achieved with an efficiency up to 74% not only in the flavobacterial strains Polaribacter Hel1_33_49 and Formosa Hel1_33_131 but also in planktonic samples from the North Sea. In combination with high-resolution microscopy, direct-geneFISH gave visual evidence of the contrasting lifestyles of closely related Polaribacter species in those samples and allowed for the determination of gene distribution among attached and free-living cells. We also detected highly similar GH92 genes in yet unidentified taxa by broadening probe specificities, enabling a visualization of the functional trait in subpopulations across the borders of species and genera. Such a quantitative insight into the niche separation of flavobacterial taxa complements our understanding of the ecology of polysaccharide-degrading bacteria beyond omics-based techniques on a single-cell level.


Author(s):  
Jian Yang ◽  
Shubo Li ◽  
Yu Liu ◽  
Ru Li ◽  
Lijuan Long

Uronic acids are commonly found in marine polysaccharides and increase structural complexity sanand intrinsic recalcitrance to enzymatic attack. The glycoside hydrolase family 2 (GH2) include proteins that target sugar conjugates with hexuronates and are involved in the catabolism and cycling of marine polysaccharides. Here, we reported a novel GH2, Aq GalA from a marine algae-associated Bacteroidetes with broad-substrate specificity. Biochemical analyses revealed that Aq GalA exhibits hydrolyzing activities against β-galacturonide, β-glucuronide, and β-galactopyranoside via retaining mechanisms. We solved the Aq GalA crystal structure in complex with galacturonic acid (GalA) and showed (via mutagenesis) that charge characteristics at uronate-binding subsites controlled substrate selectivity for uronide hydrolysis. Additionally, conformational flexibility of the Aq GalA active site pocket was proposed as a key component for broad substrate enzyme selectivity. Our Aq GalA structural and functional data augments the current understanding of substrate recognition of GH2 enzymes and provided key insights into the bacterial use of uronic acid containing polysaccharides. IMPORTANCE The decomposition of algal glycans driven by marine bacterial communities represents one of the largest heterotrophic transformation of organic matter fueling marine food webs and global carbon cycling. However, our knowledge of the carbohydrate cycling is limited due to structural complexity of marine polysaccharides and the complicated enzymatic machinery of marine microbes. To degrade algal glycan, marine bacteria such as members of Bacteroidetes produce a complex repertoire of carbohydrate-active enzymes (CAZymes) matching the structural specificity of the different carbohydrates. In this study, we investigated an extracellular GH2 β-glycosidase, Aq GalA from a marine Bacteroidetes to identify the key components responsible for glycuronides recognition and hydrolysis. The broad substrate specificity of Aq GalA against glycosides with diverse stereochemical substitutions indicates its potential in processing complex marine polysaccharides. Our findings promote a better understanding of microbially-driven mechanisms of marine carbohydrate cycling.


Author(s):  
Shu Horikoshi ◽  
Wataru Saburi ◽  
Jian Yu ◽  
Hideyuki Matsuura ◽  
James R Ketudat Cairns ◽  
...  

ABSTRACT Plants possess many glycoside hydrolase family 1 (GH1) β-glucosidases, which physiologically function in cell wall metabolism and activation of bioactive substances, but most remain uncharacterized. One GH1 isoenzyme AtBGlu42 in Arabidopsis thaliana has been identified to hydrolyze scopolin using the gene deficient plants, but no enzymatic properties were obtained. Its sequence similarity to another functionally characterized enzyme Os1BGlu4 in rice suggests that AtBGlu42 also acts on oligosaccharides. Here, we show that the recombinant AtBGlu42 possesses high kcat/Km not only on scopolin, but also on various β-glucosides, cellooligosaccharides, and laminarioligosaccharides. Of the cellooligosaccharides, cellotriose was the most preferred. The crystal structure, determined at 1.7 Å resolution, suggests that Arg342 gives unfavorable binding to cellooligosaccharides at subsite +3. The mutants R342Y and R342A showed the highest preference on cellotetraose or cellopentaose with increased affinities at subsite +3, indicating that the residues at this position have an important role for chain length specificity.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1735
Author(s):  
Lu Bai ◽  
Jonghoon Kim ◽  
Kwang-Hee Son ◽  
Chung-Wook Chung ◽  
Dong-Ha Shin ◽  
...  

Endo-type chitinase is the principal enzyme involved in the breakdown of N-acetyl-d-glucosamine-based oligomeric and polymeric materials through hydrolysis. The gene (966-bp) encoding a novel endo-type chitinase (ChiJ), which is comprised of an N-terminal chitin-binding domain type 3 and a C-terminal catalytic glycoside hydrolase family 19 domain, was identified from a fibrolytic intestinal symbiont of the earthworm Eisenia fetida, Cellulosimicrobium funkei HY-13. The highest endochitinase activity of the recombinant enzyme (rChiJ: 30.0 kDa) toward colloidal shrimp shell chitin was found at pH 5.5 and 55 °C and was considerably stable in a wide pH range (3.5–11.0). The enzyme exhibited the highest biocatalytic activity (338.8 U/mg) toward ethylene glycol chitin, preferentially degrading chitin polymers in the following order: ethylene glycol chitin > colloidal shrimp shell chitin > colloidal crab shell chitin. The enzymatic hydrolysis of N-acetyl-β-d-chitooligosaccharides with a degree of polymerization from two to six and colloidal shrimp shell chitin yielded primarily N,N′-diacetyl-β-d-chitobiose together with a small amount of N-acetyl-d-glucosamine. The high chitin-degrading ability of inverting rChiJ with broad pH stability suggests that it can be exploited as a suitable biocatalyst for the preparation of N,N′-diacetyl-β-d-chitobiose, which has been shown to alleviate metabolic dysfunction associated with type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document