Anaerobic desulfurization of ground rubber with the thermophilic archaeon Pyrococcus furiosus - a new method for rubber recycling

2001 ◽  
Vol 55 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Katarina Bredberg ◽  
Jonas Persson ◽  
Magdalena Christiansson ◽  
Bengt Stenberg ◽  
Olle Holst
2012 ◽  
Vol 85 (3) ◽  
pp. 408-449 ◽  
Author(s):  
Marvin Myhre ◽  
Sitisaiyidah Saiwari ◽  
Wilma Dierkes ◽  
Jacques Noordermeer

ABSTRACT For both environmental and economic reasons, there is broad interest in recycling rubber and in the continued development of recycling technologies. The use of postindustrial materials is a fairly well-established and documented business. Much effort over the past decade has been put into dealing with of end-of-life tires from landfills and vacant fields. It is only in the last few years that more business opportunities for recycled rubber have come to the forefront. Reclaiming rubber has gained increasing interest, more so in Europe than in North America. In those areas, much work has been done to refine the processes used. The major form of recycled rubber is still ground rubber. This is produced either by cryogenic, ambient, or wet grinding. The material is then used neat with sulfur/curatives, binders, or cements. The binders are normally moisture curable urethanes, liquid polybutadienes, or latex to produce items such as mats, floor tiles, and carpet undercushion. Recycled rubber is still used as tire derived fuel, but less so than 10 years ago. Another outlet is as an additive to asphalt. Recycled rubber can be used in the plastics industry, for which much development is being done. Large particle size ground rubber or chips are used in civil engineering applications, landscaping, or artificial turf. In terms of applications, most use is outside of the conventional rubber industry. Cost factors are still addressed in the tire industry. As of 2012, approximately 8–10% recycled material is used in tires. The biggest obstacles to further adaption are safety factors and property loss. Better methods are needed for treating or modifying the rubber surface and for regenerating the rubber through devulcanization. Devulcanization gives the highest quality recycled material in terms of processing and properties. However, shortcomings to devulcanization are reduced process safety and odorous chemicals that are required at present.


2020 ◽  
Vol 12 (42) ◽  
pp. 47957-47965
Author(s):  
Yu Sun ◽  
Xuesong Yan ◽  
Honghe Liang ◽  
Georg Böhm ◽  
Li Jia

2000 ◽  
Vol 182 (21) ◽  
pp. 6036-6041 ◽  
Author(s):  
Karl-Peter Hopfner ◽  
Annette Karcher ◽  
David Shin ◽  
Cecilia Fairley ◽  
John A. Tainer ◽  
...  

ABSTRACT The processing of DNA double-strand breaks is a critical event in nucleic acid metabolism. This is evidenced by the severity of phenotypes associated with deficiencies in this process in multiple organisms. The core component involved in double-strand break repair in eukaryotic cells is the Mre11-Rad50 protein complex, which includes a third protein, p95, in humans and Xrs2 in yeasts. Homologues of Mre11 and Rad50 have been identified in all kingdoms of life, while the Nbs1 protein family is found only in eukaryotes. In eukaryotes the Mre11-Rad50 complex has nuclease activity that is modulated by the addition of ATP. We have isolated the Mre11 and Rad50 homologues from the thermophilic archaeon Pyrococcus furiosus and demonstrate that the two proteins exist in a large, heat-stable complex that possesses single-strand endonuclease activity and ATP-dependent double-strand-specific exonuclease activity. These findings verify the identification of the P. furiosus Rad50 and Mre11 homologues and demonstrate that functional homologues with similar biochemical properties exist in all kingdoms of life.


Author(s):  
C. C. Clawson ◽  
L. W. Anderson ◽  
R. A. Good

Investigations which require electron microscope examination of a few specific areas of non-homogeneous tissues make random sampling of small blocks an inefficient and unrewarding procedure. Therefore, several investigators have devised methods which allow obtaining sample blocks for electron microscopy from region of tissue previously identified by light microscopy of present here techniques which make possible: 1) sampling tissue for electron microscopy from selected areas previously identified by light microscopy of relatively large pieces of tissue; 2) dehydration and embedding large numbers of individually identified blocks while keeping each one separate; 3) a new method of maintaining specific orientation of blocks during embedding; 4) special light microscopic staining or fluorescent procedures and electron microscopy on immediately adjacent small areas of tissue.


1960 ◽  
Vol 23 ◽  
pp. 227-232 ◽  
Author(s):  
P WEST ◽  
G LYLES
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document