RUBBER RECYCLING: CHEMISTRY, PROCESSING, AND APPLICATIONS

2012 ◽  
Vol 85 (3) ◽  
pp. 408-449 ◽  
Author(s):  
Marvin Myhre ◽  
Sitisaiyidah Saiwari ◽  
Wilma Dierkes ◽  
Jacques Noordermeer

ABSTRACT For both environmental and economic reasons, there is broad interest in recycling rubber and in the continued development of recycling technologies. The use of postindustrial materials is a fairly well-established and documented business. Much effort over the past decade has been put into dealing with of end-of-life tires from landfills and vacant fields. It is only in the last few years that more business opportunities for recycled rubber have come to the forefront. Reclaiming rubber has gained increasing interest, more so in Europe than in North America. In those areas, much work has been done to refine the processes used. The major form of recycled rubber is still ground rubber. This is produced either by cryogenic, ambient, or wet grinding. The material is then used neat with sulfur/curatives, binders, or cements. The binders are normally moisture curable urethanes, liquid polybutadienes, or latex to produce items such as mats, floor tiles, and carpet undercushion. Recycled rubber is still used as tire derived fuel, but less so than 10 years ago. Another outlet is as an additive to asphalt. Recycled rubber can be used in the plastics industry, for which much development is being done. Large particle size ground rubber or chips are used in civil engineering applications, landscaping, or artificial turf. In terms of applications, most use is outside of the conventional rubber industry. Cost factors are still addressed in the tire industry. As of 2012, approximately 8–10% recycled material is used in tires. The biggest obstacles to further adaption are safety factors and property loss. Better methods are needed for treating or modifying the rubber surface and for regenerating the rubber through devulcanization. Devulcanization gives the highest quality recycled material in terms of processing and properties. However, shortcomings to devulcanization are reduced process safety and odorous chemicals that are required at present.

2001 ◽  
Vol 55 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Katarina Bredberg ◽  
Jonas Persson ◽  
Magdalena Christiansson ◽  
Bengt Stenberg ◽  
Olle Holst

2020 ◽  
Author(s):  
Cristian Valdés ◽  
Camila Hernández ◽  
Rodrigo Morales-Vera ◽  
Rodrigo Andler

Abstract Currently, recycling or degradation treatments for tires are an enormous challenge. Despite efforts to dispose of or recycle it, rubber waste is increasing year by year worldwide. To create a rubber-recycling system, several researchers have proposed tire desulfurization. In this study, we compare two methods: one biological, using Acidobacillus ferroxidans in shake 250 mL flask experiments, and one chemical using, for the first time, microwaves and an aqueous solution. The results of these methods were analyzed through sulfate quantification, cross-linking differences, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy with energy disperse spectroscopy (SEM-EDS). We observed that the amount of sulfates generated by the chemical system was 56 mg / L, which was 10-times higher than the biological system, which generated 5.3 mg / L. Similarly, after cross-linking studies, a 36% higher decrease after the chemical treatment was observed. When using FTIR analysis, the disappearance of characteristic bands corresponding to functional groups containing sulfur bonds was observed by treating the sample with both desulfurization mechanisms. Morphological changes on the rubber surface structure was also demonstrated by SEM-EDS analysis with the appearance of holes, cracks and changes in the porosity of the material. This work analyzed two different non-aggressive desulfurization mechanisms that might be used as sustainable methods for rubber recycling processes.


2021 ◽  
Vol 9 ◽  
Author(s):  
C. Valdés ◽  
C. Hernández ◽  
R. Morales-Vera ◽  
R. Andler

Currently, recycling or degradation treatments for tires are an enormous challenge. Despite efforts to dispose of or recycle it, rubber waste is increasing year by year worldwide. To create a rubber-recycling system, several researchers have proposed tire desulfurization. In this study, we compare two methods: one biological, using Acidobacillus ferroxidans in shake 250 ml flask experiments, and one chemical using, for the first time, microwaves and an aqueous solution. The results of these methods were analyzed through sulfate quantification, cross-linking differences, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy with energy disperse spectroscopy (SEM-EDS). We observed that the amount of sulfates generated by the chemical system was 22.40 (mg/L)/g of rubber, which was 22-times higher than the biological system, which generated 1.06 (mg/L)/g of rubber. Similarly, after cross-linking studies, a 36% higher decrease after the chemical treatment was observed. When using FTIR analysis, the disappearance of characteristic bands corresponding to functional groups containing sulfur bonds and metal oxides were observed by treating the sample with both desulfurization methods. Morphological changes on the rubber surface structure was also demonstrated by SEM-EDS analysis with the appearance of holes, cracks and changes in the porosity of the material. This work analyzed two different non-aggressive desulfurization approaches that might be used as methods for rubber recycling processes.


2020 ◽  
Vol 12 (42) ◽  
pp. 47957-47965
Author(s):  
Yu Sun ◽  
Xuesong Yan ◽  
Honghe Liang ◽  
Georg Böhm ◽  
Li Jia

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Shu Ling Zhang ◽  
Zhen Xiu Zhang ◽  
Dong jin Kang ◽  
Dae Suk Bang ◽  
Jin Kuk Kim

AbstractIn this article, the possibility of obtaining the recycled material based on waste polypropylene (WPP) and waste ground rubber tire powder (WGRT) has been studied. It has been proved that partially replacing WPP with PP-g-MA increased the elongation at break of WPP/WGRT blends, whereas decreased the thermal stability. The presence of compatibilizer increased the elongation at break and thermal stability of WPP/WGRT blends, whereas decreased the processing flowability, as revealed by using universal testing machine (UTM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and capillary rheometer. Moreover, the tendency of the change became more obvious with the content of PP-g-MA and compatibilizer or with the combination of PP-g-MA and compatibilizer. In addition, the improvement of the nonpolar compatibilizer (SEBS) in properties of WPP/WGRT blends was better than that of the polar compatibilizer (SEBS-g-MA).


2014 ◽  
Vol 42 (4) ◽  
pp. 200-215
Author(s):  
Paul Wagner ◽  
Frank Schmerwitz ◽  
Hagen Lind ◽  
Burkhard Wies

ABSTRACT The wear mechanism of rubber is complex, and the direct experimental observations of wear are limited. The understanding of the wear mechanism and its prevention are important aims and fields of investigation in the tire industry. The most straightforward way to quantify wear is a measurement of the mass loss after wear experiments. The different mass loss of different rubber materials is used to classify the wear performance of the materials. An additional way to obtain information about the different wear behavior of different compounds and the mechanism is to take a look of the worn surface of the wheels. After wear experiments with real tires on the street or small rubber wheels in laboratory, microstructures normal to the slip direction occur, the so called Schallamach waves. The kinematic analysis of these structures can lead to a deeper understanding of the wear mechanism. The surfaces of four compounds with a different wear performance are investigated in this paper with the aim of distinguishing them not just through the measured mass losses but also through an analysis of the surface and the extraction of a characteristic. This characteristic is recognized as the lateral displacement of the surface structures. It is quantified using a new evaluation technique based on the particle image velocimetry (PIV) method. The lateral displacement is compound specific and is observed parallel to the lowering of the altitude due to mass loss. In addition, the observed microstructures are used to add a new aspect of local plasticization to the well-established wear mechanism theory.


2018 ◽  
Vol 152 ◽  
pp. 01007 ◽  
Author(s):  
Rashmi Walvekar ◽  
Zulkefly Mohammad. Afiq ◽  
Suganti Ramarad ◽  
Siddiqui Khalid

This research project focuses on an alternative pathway of devulcanizing waste tire rubber by using amine based chemicals. Waste tire rubbers are known to be as toxic, non-degradable material due to their vulcanized crosslink carbon structure, and disposing of such waste could impose hazardous impacts on the environment. The current rubber recycling methods that are practiced today are rather uneconomical, non-environmentally friendly, and also producing recycled rubber with low quality due to the alteration in the main polymeric chains of waste rubber. This project aims to answer the question of whether the usage of amine can produce high quality rubber, where the properties of recycled rubber is almost the same as new/virgin rubber. With known potential of amine, it is a challenge for the chemical to selectively cleave the sulfur bonds without affecting the main carbon backbone chain in the rubber structure and diminishing much of the rubber properties. To study this research, amine-treated rubber must undergo devulcanisation process by applying heat and sonication energy. Then, the properties of the amine-treated rubber were determined through a set of characterization tests and analysis which are: gel content test to determine the weight of rubber before and after devulcanization, the thermogravimetric analysis (TGA) to determine the thermal degradation and stability of rubber, and Fourier Transform Infrared Spectroscopy (FTIR) to determine any structural change of the rubber. In this research so far, the first two preliminary analysis tests have been performed. The gel content test has shown that tertiary amine samples possessed a lower gel content (%) of (77 – 63 %), compared to primary amine samples (falls within the range of 80%), as well as the TGA test in which tertiary amine samples degrade faster than primary amine samples (suggesting a higher degree of rubber structure breakdown). For each type of amine, the concertation of amine did not play a major role in affecting the degree of devulcanization (as the concentration increased, the degree of devulcanization decreased for some samples). FTIR analysis showed that only sulphur-sulphur bonds were cleaved during the devulcanization process, leaving the carbon-sulphur bonds unaffected.


Sign in / Sign up

Export Citation Format

Share Document