scholarly journals Clinically feasible semi-automatic workflows for measuring metabolically active tumour volume in metastatic melanoma

Author(s):  
Joyce van Sluis ◽  
Ellen C. de Heer ◽  
Mayke Boellaard ◽  
Mathilde Jalving ◽  
Adrienne H. Brouwers ◽  
...  

Abstract Purpose Metabolically active tumour volume (MATV) is a potential quantitative positron emission tomography (PET) imaging biomarker in melanoma. Accumulating data indicate that low MATV may predict increased chance of response to immunotherapy and overall survival. However, metastatic melanoma can present with numerous (small) tumour lesions, making manual tumour segmentation time-consuming. The aim of this study was to evaluate multiple semi-automatic segmentation workflows to determine reliability and reproducibility of MATV measurements in patients with metastatic melanoma. Methods An existing cohort of 64 adult patients with histologically proven metastatic melanoma was used in this study. 18F-FDG PET/CT diagnostic baseline images were acquired using a European Association of Nuclear Medicine (EANM) Research Limited–accredited Siemens Biograph mCT PET/CT system (Siemens Healthineers, Knoxville, USA). PET data were analysed using manual, gradient-based segmentation and five different semi-automatic methods: three direct PET image–derived delineations (41MAX, A50P and SUV40) and two based on a majority-vote approach (MV2 and MV3), without and with (suffix ‘+’) manual lesion addition. Correlation between the different segmentation methods and their respective associations with overall survival was assessed. Results Correlation between the MATVs derived by the manual segmentation and semi-automated tumour segmentations ranged from R2 = 0.41 for A50P to R2 = 0.85 for SUV40+ and MV2+, respectively. Manual MATV segmentation did not differ significantly from the semi-automatic methods SUV40 (∆MATV mean ± SD 0.08 ± 0.60 mL, P = 0.303), SUV40+ (∆MATV − 0.10 ± 0.51 mL, P = 0.126), MV2+ (∆MATV − 0.09 ± 0.62 mL, P = 0.252) and MV3+ (∆MATV − 0.03 ± 0.55 mL, P = 0.615). Log-rank tests showed statistically significant overall survival differences between above and below median MATV patients for all segmentation methods with areas under the ROC curves of 0.806 for manual segmentation and between 0.756 [41MAX] and 0.807 [MV3+] for semi-automatic segmentations. Conclusions Simple and fast semi-automated FDG PET segmentation workflows yield accurate and reproducible MATV measurements that correlate well with manual segmentation in metastatic melanoma. The most readily applicable and user-friendly SUV40 method allows feasible MATV measurement in prospective multicentre studies required for validation of this potential PET imaging biomarker for clinical use.

2016 ◽  
Vol 34 (15_suppl) ◽  
pp. 9523-9523 ◽  
Author(s):  
Annie Ngai Man Wong ◽  
Jason Callahan ◽  
Jenny Beresford ◽  
Alan Herschtal ◽  
Sonia Fullerton ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Amy J. Weisman ◽  
Jihyun Kim ◽  
Inki Lee ◽  
Kathleen M. McCarten ◽  
Sandy Kessel ◽  
...  

Abstract Purpose For pediatric lymphoma, quantitative FDG PET/CT imaging features such as metabolic tumor volume (MTV) are important for prognosis and risk stratification strategies. However, feature extraction is difficult and time-consuming in cases of high disease burden. The purpose of this study was to fully automate the measurement of PET imaging features in PET/CT images of pediatric lymphoma. Methods 18F-FDG PET/CT baseline images of 100 pediatric Hodgkin lymphoma patients were retrospectively analyzed. Two nuclear medicine physicians identified and segmented FDG avid disease using PET thresholding methods. Both PET and CT images were used as inputs to a three-dimensional patch-based, multi-resolution pathway convolutional neural network architecture, DeepMedic. The model was trained to replicate physician segmentations using an ensemble of three networks trained with 5-fold cross-validation. The maximum SUV (SUVmax), MTV, total lesion glycolysis (TLG), surface-area-to-volume ratio (SA/MTV), and a measure of disease spread (Dmaxpatient) were extracted from the model output. Pearson’s correlation coefficient and relative percent differences were calculated between automated and physician-extracted features. Results Median Dice similarity coefficient of patient contours between automated and physician contours was 0.86 (IQR 0.78–0.91). Automated SUVmax values matched exactly the physician determined values in 81/100 cases, with Pearson’s correlation coefficient (R) of 0.95. Automated MTV was strongly correlated with physician MTV (R = 0.88), though it was slightly underestimated with a median (IQR) relative difference of − 4.3% (− 10.0–5.7%). Agreement of TLG was excellent (R = 0.94), with median (IQR) relative difference of − 0.4% (− 5.2–7.0%). Median relative percent differences were 6.8% (R = 0.91; IQR 1.6–4.3%) for SA/MTV, and 4.5% (R = 0.51; IQR − 7.5–40.9%) for Dmaxpatient, which was the most difficult feature to quantify automatically. Conclusions An automated method using an ensemble of multi-resolution pathway 3D CNNs was able to quantify PET imaging features of lymphoma on baseline FDG PET/CT images with excellent agreement to reference physician PET segmentation. Automated methods with faster throughput for PET quantitation, such as MTV and TLG, show promise in more accessible clinical and research applications.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 700 ◽  
Author(s):  
Fabio Zattoni ◽  
Elena Incerti ◽  
Fabrizio Dal Moro ◽  
Marco Moschini ◽  
Paolo Castellucci ◽  
...  

Objectives: To evaluate the ability of 18F-labeled fluoro-2-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) to predict survivorship of patients with bladder cancer (BC) and/or upper urinary tract carcinoma (UUTC). Materials: Data from patients who underwent FDG PET/CT for suspicion of recurrent urothelial carcinoma (UC) between 2007 and 2015 were retrospectively collected in a multicenter study. Disease management after the introduction of FDG PET/CT in the diagnostic algorithm was assessed in all patients. Kaplan-Meier and log-rank analysis were computed for survival assessment. A Cox regression analysis was used to identify predictors of recurrence and death, for BC, UUTC, and concomitant BC and UUTC. Results: Data from 286 patients were collected. Of these, 212 had a history of BC, 38 of UUTC and 36 of concomitant BC and UUTC. Patient management was changed in 114/286 (40%) UC patients with the inclusion of FDG PET/CT, particularly in those with BC, reaching 74% (n = 90/122). After a mean follow-up period of 21 months (Interquartile range: 4–28 mo.), 136 patients (47.4%) had recurrence/progression of disease. Moreover, 131 subjects (45.6%) died. At Kaplan-Meier analyses, patients with BC and positive PET/CT had a worse overall survival than those with a negative scan (log-rank < 0.001). Furthermore, a negative PET/CT scan was associated with a lower recurrence rate than a positive examination, independently from the primary tumor site. At multivariate analysis, in patients with BC and UUTC, a positive FDG PET/CT resulted an independent predictor of disease-free and overall survival (p < 0,01). Conclusions: FDG PET/CT has the potential to change patient management, particularly for patients with BC. Furthermore, it can be considered a valid survival prediction tool after primary treatment in patients with recurrent UC. However, a firm recommendation cannot be made yet. Further prospective studies are necessary to confirm our findings.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 279
Author(s):  
Tine N. Christensen ◽  
Seppo W. Langer ◽  
Gitte Persson ◽  
Klaus Richter Larsen ◽  
Annemarie G. Amtoft ◽  
...  

Radiation-induced changes may cause a non-malignant high 2-deoxy-2-[18F]fluoro-d-glucose (FDG)-uptake. The 3′-deoxy-3′-[18F]fluorothymidine (FLT)-PET/CT performs better in the differential diagnosis of inflammatory changes and lung lesions with a higher specificity than FDG-PET/CT. We investigated the association between post-radiotherapy FDG-PET-parameters, FLT-PET-parameters, and outcome. Sixty-one patients suspected for having a relapse after definitive radiotherapy for lung cancer were included. All the patients had FDG-PET/CT and FLT-PET/CT. FDG-PET- and FLT-PET-parameters were collected from within the irradiated high-dose volume (HDV) and from recurrent pulmonary lesions. For associations between PET-parameters and relapse status, respectively, the overall survival was analyzed. Thirty patients had a relapse, of these, 16 patients had a relapse within the HDV. FDG-SUVmax and FLT-SUVmax were higher in relapsed HDVs compared with non-relapsed HDVs (median FDG-SUVmax: 12.8 vs. 4.2; p < 0.001; median FLT-SUVmax 3.9 vs. 2.2; p < 0.001). A relapse within HDV had higher FDG-SUVpeak (median FDG-SUVpeak: 7.1 vs. 3.5; p = 0.014) and was larger (median metabolic tumor volume (MTV50%): 2.5 vs. 0.7; 0.014) than the relapsed lesions outside of HDV. The proliferative tumor volume (PTV50%) was prognostic for the overall survival (hazard ratio: 1.07 pr cm3 [1.01–1.13]; p = 0.014) in the univariate analysis, but not in the multivariate analysis. FDG-SUVmax and FLT-SUVmax may be helpful tools for differentiating the relapse from radiation-induced changes, however, they should not be used definitively for relapse detection.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 198
Author(s):  
Margarida Rodrigues ◽  
Kevin-Klaus Winkler ◽  
Hanna Svirydenka ◽  
Bernhard Nilica ◽  
Christian Uprimny ◽  
...  

Peptide receptor radionuclide therapy (PRRT) has been recognized as a promising therapy against neuroendocrine tumors (NETs). The use of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in NETs has been a matter of controversy. The purpose of this study was to evaluate the long-term survival and efficacy of a second PRRT course with 177Lu-DOTATE in patients with advanced gastroenteropancreatic (GEP) NETs. Furthermore, the value of 18F-FDG PET/CT in these patients was evaluated. 40 patients with GEP NETs who underwent two PRRT courses with 177Lu-DOTATATE and combined examinations with 68Ga-DOTA-TOC and 18F-FDG PET/CT were evaluated. After the second PRRT course, two patients (5.0%) were in partial remission, 21 patients (52.5%) in stable disease and 17 patients (42.5%) had progressive disease. The median overall survival was 122.10 months. After the second PRRT course, the median overall survival was significantly higher (p = 0.033) in the 18F-FDG-negative group compared to the 18F-FDG-positive group (145.50 versus 95.06 months, respectively). The median time to progression was 19.37 months. In conclusion, a second PRRT course with 177Lu-DOTATE is an effective treatment approach for GEP NET patients with disease progression. A change in 18F-FDG status after PRRT may predict the disease course and survival. Patients who are 18F-FDG-negative have a significantly longer overall survival than those who are 18F-FDG-positive.


2018 ◽  
Vol 68 (2) ◽  
pp. 297-303 ◽  
Author(s):  
Christos Sachpekidis ◽  
Lionel Larribère ◽  
Annette Kopp-Schneider ◽  
Jessica C. Hassel ◽  
Antonia Dimitrakopoulou-Strauss

Sign in / Sign up

Export Citation Format

Share Document