Assessing the Impacts of Urban Land Use Changes on Regional Ecosystem Services According to Urban Green Space Policies Via the Patch-Based Cellular Automata Model

Author(s):  
Ilkwon Kim ◽  
Hyuksoo Kwon
2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Nhat-Duc Hoang ◽  
Xuan-Linh Tran

Information regarding the current status of urban green space is crucial for urban land-use planning and management. This study proposes a remote sensing and data-driven solution for urban green space detection at regional scale via employment of state-of-the-art metaheuristic and machine learning approaches. Remotely sensed data obtained from Sentinel 2 satellite in the study area of Da Nang city (Vietnam) are used to construct and verify an intelligent model that hybridizes Marine Predators Algorithm (MPA) and support vector machines (SVM). SVM are employed to generalize a decision boundary that separates features characterizing statistical measurements of remote sensing data into two categories of “green space” and “nongreen space”. The MPA metaheuristic is used to optimize the SVM training phase by identifying an appropriate set of the SVM’s hyperparameters including the penalty coefficient and the kernel function parameter. Experimental results show that the proposed model which processes information provided by all of the Sentinel 2 satellite’s spectral bands can deliver a better performance than those obtained from the model based on vegetation indices. With a good classification accuracy rate of roughly 93%, an F1 score = 0.93, and an area under the receiver operating characteristic = 0.98, the newly developed model is a promising tool to assist local authority to obtain up-to-date information on urban green space and develop plans of sustainable urban land use.


2019 ◽  
Vol 12 (1) ◽  
pp. 326 ◽  
Author(s):  
Jie Liu ◽  
Lang Zhang ◽  
Qingping Zhang

The development and evolution of an urban green space system is affected by both natural effects and human intervention. The simulation and prediction of an urban green space system can enhance the foresight of urban planning. In this study, several land use change scenarios of the main urban area of Xuchang City were simulated from 2014 to 2030 based on high-resolution land use data. The layout of each scenario was evaluated using landscape indexes. A Cellular Automata–based method (i.e., future land use simulation, FLUS) was applied to develop the urban green space system, which we combined with urban land use evolution. Using recent data, the FLUS model effectively dealt with the uncertainty and complexity of various land use types under natural and human effects and solved the dependence and error transmission of multiperiod data in the traditional land use simulation process. The root mean square error (RMSE) of probability of the suitability occurrence module and the Kappa coefficient of the overall model simulation accuracy verification index both met accuracy requirements. It was feasible to combine the evolution of the urban green space system with urban land development. Moreover, under the Baseline Scenario, the urban land use layout was relatively scattered, and the urban green space system showed a disordered development trend. The Master Plan Scenario had a compact urban land use layout, and the green space system was characterized by networking and systematization, but it did not consider the service capacity of the green space. The Planning Guidance Scenario introduced constraint conditions (i.e., a spatial development strategy, green space accessibility, and ecological sensitivity), which provided a more intensive and efficient urban space and improved the service function of the green space system layout. Managers and planners can evaluate the urban future land use development mode under different constraints. Moreover, they would be able to adjust the urban planning in the implementation process. This work has transformed the technical nature of the planning work from “static results” to a “dynamic process”.


Information ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 193 ◽  
Author(s):  
Jiuyuan Huo ◽  
Zheng Zhang

Scientifically and rationally analyzing the characteristics of land use evolution and exploring future trends in land use changes can provide the scientific reference basis for the rational development and utilization of regional land resources and sustainable economic development. In this paper, an improved hybrid artificial bee colony (ABC) algorithm based on the mutation of inferior solutions (MHABC) is introduced to combine with the cellular automata (CA) model to implement a new CA rule mining algorithm (MHABC-CA). To verify the capabilities of this algorithm, remote sensing data of three stages, 2005, 2010, and 2015, are adopted to dynamically simulate urban development of Dengzhou city in Henan province, China, using the MHABC-CA algorithm. The comprehensive validation and analysis of the simulation results are performed by two aspects of comparison, the visual features of urban land use types and the quantification analysis of simulation accuracy. Compared with a cellular automata model based on a particle swarm optimization (PSO-CA) algorithm, the experimental results demonstrate the effectiveness of the MHABC-CA algorithm in the prediction field of urban land use changes.


Sign in / Sign up

Export Citation Format

Share Document