abc algorithm
Recently Published Documents


TOTAL DOCUMENTS

431
(FIVE YEARS 154)

H-INDEX

22
(FIVE YEARS 5)

2022 ◽  
pp. 728-748
Author(s):  
Gummadi Srinivasa Rao ◽  
Y. P. Obulesh ◽  
B. Venkateswara Rao

In this chapter, an amalgamation of artificial bee colony (ABC) algorithm and artificial neural network (ANN) approach is recommended for optimizing the location and capacity of distribution generations (DGs) in distribution network. The best doable place in the network has been approximated using ABC algorithm by means of the voltage deviation, power loss, and real power deviation of load buses and the DG capacity is approximated by using ANN. In this, single DG and two DGs have been considered for calculation of doable place in the network and capacity of the DGs to progress the voltage stability and reduce the power loss of the system. The power flow of the system is analyzed using iterative method (The Newton-Raphson load flow study) from which the bus voltages, active power, reactive power, power loss, and voltage deviations of the system have been achieved. The proposed method is tested in MATLAB, and the results are compared with particle swarm optimization (PSO) algorithm, ANN, and hybrid PSO and ANN methods for effectiveness of the proposed system.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jian’qiang He ◽  
Naian Liu ◽  
Mei’lin Han ◽  
Yao Chen

In order to ensure “a river of clear water is supplied to Beijing and Tianjin” and improve the water quality prediction accuracy of the Danjiang water source, while avoiding the local optimum and premature maturity of the artificial bee colony algorithm, an improved artificial bee colony algorithm (ABC algorithm) is proposed to optimize the Danjiang water quality prediction model of BP neural network is proposed. This method improves the local and global search capabilities of the ABC algorithm by adding adaptive local search factors and mutation factors, improves the performance of local search, and avoids local optimal conditions. The improved ABC algorithm is used to optimize the weights and thresholds of the BP neural network to establish a water quality grade prediction model. Taking the water quality monitoring data of Danjiang source (Shangzhou section) from 2015 to 2019 as the research object, it is compared with GA-BP, PSO-BP, ABC-BP, and BP models. The research results show that the improved ABC-BP algorithm has the highest prediction accuracy, faster convergence speed, stronger stability, and robustness.


Algorithms ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 324
Author(s):  
Yuanzi Zhang ◽  
Jing Wang ◽  
Xiaolin Li ◽  
Shiguo Huang ◽  
Xiuli Wang

There are generally many redundant and irrelevant features in high-dimensional datasets, which leads to the decline of classification performance and the extension of execution time. To tackle this problem, feature selection techniques are used to screen out redundant and irrelevant features. The artificial bee colony (ABC) algorithm is a popular meta-heuristic algorithm with high exploration and low exploitation capacities. To balance between both capacities of the ABC algorithm, a novel ABC framework is proposed in this paper. Specifically, the solutions are first updated by the process of employing bees to retain the original exploration ability, so that the algorithm can explore the solution space extensively. Then, the solutions are modified by the updating mechanism of an algorithm with strong exploitation ability in the onlooker bee phase. Finally, we remove the scout bee phase from the framework, which can not only reduce the exploration ability but also speed up the algorithm. In order to verify our idea, the operators of the grey wolf optimization (GWO) algorithm and whale optimization algorithm (WOA) are introduced into the framework to enhance the exploitation capability of onlooker bees, named BABCGWO and BABCWOA, respectively. It has been found that these two algorithms are superior to four state-of-the-art feature selection algorithms using 12 high-dimensional datasets, in terms of the classification error rate, size of feature subset and execution speed.


2021 ◽  
Author(s):  
Shun Nishizawa ◽  
Toshiyuki Satoh ◽  
Naoki Saito ◽  
Jun-ya Nagase ◽  
Norihiko Saga
Keyword(s):  

Author(s):  
Satyabrata Dalei ◽  
Bibhuti Prasad Sahoo ◽  
Ramendranath Polai ◽  
Anubhav Nanda ◽  
Sujit Kumar Minz

2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Yang

Music plays an extremely important role in people’s production and life. The amount of music is growing rapidly. At the same time, the demand for music organization, classification, and retrieval is also increasing. Paying more attention to the emotional expression of creators and the psychological characteristics of music are also indispensable personalized needs of users. The existing music emotion recognition (MER) methods have the following two challenges. First, the emotional color conveyed by the first music is constantly changing with the playback of the music, and it is difficult to accurately express the ups and downs of music emotion based on the analysis of the entire music. Second, it is difficult to analyze music emotions based on the pitch, length, and intensity of the notes, which can hardly reflect the soul and connotation of music. In this paper, an improved back propagation (BP) algorithm neural network is used to analyze music data. Because the traditional BP network tends to fall into local solutions, the selection of initial weights and thresholds directly affects the training effect. This paper introduces artificial bee colony (ABC) algorithm to improve the structure of BP neural network. The output value of the ABC algorithm is used as the weight and threshold of the BP neural network. The ABC algorithm is responsible for adjusting the weights and thresholds, and feeds back the optimal weights and thresholds to the BP neural network system. BP neural network with ABC algorithm can improve the global search ability of the BP network, while reducing the probability of the BP network falling into the local optimal solution, and the convergence speed is faster. Through experiments on public music data sets, the experimental results show that compared with other comparative models, the MER method used in this paper has better recognition effect and faster recognition speed.


2021 ◽  
Vol 18 (182) ◽  
pp. 20210362
Author(s):  
Michael J. Carr ◽  
Matthew J. Simpson ◽  
Christopher Drovandi

We develop a parameter estimation method based on approximate Bayesian computation (ABC) for a stochastic cell invasion model using fluorescent cell cycle labelling with proliferation, migration and crowding effects. Previously, inference has been performed on a deterministic version of the model fitted to cell density data, and not all parameters were identifiable. Considering the stochastic model allows us to harness more features of experimental data, including cell trajectories and cell count data, which we show overcomes the parameter identifiability problem. We demonstrate that, while difficult to collect, cell trajectory data can provide more information about the parameters of the cell invasion model. To handle the intractability of the likelihood function of the stochastic model, we use an efficient ABC algorithm based on sequential Monte Carlo. Rcpp and MATLAB implementations of the simulation model and ABC algorithm used in this study are available at https://github.com/michaelcarr-stats/FUCCI .


Sign in / Sign up

Export Citation Format

Share Document