Towards an Environmental Classification of Lentic Aquatic Ecosystems in the McMurdo Dry Valleys, Antarctica

Author(s):  
Ian Hawes ◽  
Clive Howard-Williams ◽  
Neil Gilbert ◽  
Kurt Joy
2017 ◽  
Vol 29 (3) ◽  
pp. 252-263 ◽  
Author(s):  
Ruth C. Heindel ◽  
Angela M. Spickard ◽  
Ross A. Virginia

AbstractThe predicted increase in liquid water availability in the McMurdo Dry Valleys (MDV), Antarctica, may have profound consequences for nutrient cycling in soil and aquatic ecosystems. Our ability to predict future changes relies on our understanding of current nutrient cycling processes. Multiple hypotheses exist to explain the variability in soil phosphorus content and availability found throughout the MDV region. We analysed 146 surface soil samples from the MDV to determine the relative importance of parent material, landscape age, soil chemistry and texture, and topography on two biologically relevant phosphorus pools, HCl- and NaHCO3-extractable phosphorus. While HCl-extractable phosphorus is highly predicted by parent material, NaHCO3-extractable phosphorus is unrelated to parent material but is significantly correlated with soil conductivity, soil texture and topography. Neither measure of soil phosphorus was related to landscape age across a gradient of ~20 000 to 1 500 000 years. Glacial history has played an important role in the availability of soil phosphorus by shaping patterns of soil texture and parent material. With a predicted increase in water availability, the rate of mineral weathering may increase, releasing more HCl-extractable phosphorus into soil and aquatic ecosystems.


2016 ◽  
Author(s):  
Devin Castendyk ◽  
◽  
Maciej K. Obryk ◽  
Sasha Z. Leidman ◽  
Michael Gooseff ◽  
...  

2016 ◽  
Author(s):  
Melisa A. Diaz ◽  
◽  
Susan A. Welch ◽  
Kathleen A. Welch ◽  
Alia L. Khan ◽  
...  

2016 ◽  
Author(s):  
Kate M. Swanger ◽  
◽  
Joerg M. Schaefer ◽  
Gisela Winckler

2017 ◽  
Author(s):  
Melisa A. Diaz ◽  
◽  
Byron J. Adams ◽  
Alia L. Khan ◽  
Kathleen A. Welch ◽  
...  

2016 ◽  
Vol 15 (7) ◽  
pp. 743-754 ◽  
Author(s):  
Isaac Garrido-Benavent ◽  
Ulrik Søchting ◽  
Asunción de los Ríos Murillo ◽  
Sergio Pérez-Ortega

2007 ◽  
Vol 55 (3) ◽  
pp. 395-405 ◽  
Author(s):  
U. Stingl ◽  
J.-C. Cho ◽  
W. Foo ◽  
K. L. Vergin ◽  
B. Lanoil ◽  
...  

2016 ◽  
Vol 62 (234) ◽  
pp. 714-724 ◽  
Author(s):  
SHELLEY MACDONELL ◽  
MARTIN SHARP ◽  
SEAN FITZSIMONS

ABSTRACTCryoconite holes can be important sources and stores of water and nutrients on cold and polythermal glaciers, and they provide a habitat for various forms of biota. Understanding the hydrological connectivity of cryoconite holes may be the key to understanding the transport of nutrients and biological material to the proglacial areas of such glaciers. This paper aims to characterize and explain spatial variability in the connectivity of ice-lidded cryoconite holes on a small, piedmont glacier in the McMurdo Dry Valleys through geochemical analysis of cryoconite hole waters. Solute concentrations in both surface and near-surface ice and cryoconite holes, vary greatly along the glacier centerline, and all sample types displayed similar spatial patterns of variability. Using chloride as a tracer, we estimated variations in cryoconite hole connectivity along the glacier centerline. We found that a previously used mass transfer method did not provide reliable estimates of the time period for which cryoconite hole waters had been isolated from the atmosphere. We attribute this to spatial variability in both the chloride content of the surface ice and surface ablation rates. The approach may, however, be used to qualitatively characterize spatial variations in the hydrological connectivity of the cryoconite holes. These results also suggest that ice-lidded cryoconite holes are never truly isolated from the near-surface drainage system.


Sign in / Sign up

Export Citation Format

Share Document