nutrient cycling
Recently Published Documents


TOTAL DOCUMENTS

1456
(FIVE YEARS 314)

H-INDEX

90
(FIVE YEARS 8)

2022 ◽  
Vol 328 ◽  
pp. 107847
Author(s):  
Victor Burgeon ◽  
Julien Fouché ◽  
Sarah Garré ◽  
Ramin Heidarian Dehkordi ◽  
Gilles Colinet ◽  
...  
Keyword(s):  

2022 ◽  
Vol 109 ◽  
pp. 103381
Author(s):  
Salifou Traoré ◽  
Daouda Guébré ◽  
Edmond Hien ◽  
Mamoudou Traoré ◽  
Nathan Lee ◽  
...  

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12753
Author(s):  
Ahmad Yusuf Abubakar ◽  
Muhammed Mustapha Ibrahim ◽  
Caifang Zhang ◽  
Muhammad Tayyab ◽  
Nyumah Fallah ◽  
...  

Background Exploring high-quality organic amendments has been a focus of sustainable agriculture. Filtered mud (FM), a sugar factory waste derived from sugarcane stems, could be an alternative organic amendment for sugarcane production. However, the effects of its application proportions on soil fertility, nutrient cycling, structure of soil bacterial and fungal communities, and the growth of sugarcane in clay-loam soils remain unexplored. Methods Three application proportions of FM: (FM1-(FM: Soil at 1:4), FM2-(FM: Soil at 2:3), and FM3-(FM: Soil at 3:2)) were evaluated on sugarcane growth and soil nutrient cycling. High throughput sequencing was also employed to explore soil microbial dynamics. Results We observed that FM generally increased the soil’s nutritional properties while improving NO3− retention compared to the control, resulting in increased growth parameters of sugarcane. Specifically, FM1 increased the concentration of NH4+−N, the N fraction preferably taken up by sugarcane, which was associated with an increase in the plant height, and more improved growth properties, among other treatments. An increase in the proportion of FM also increased the activity of soil nutrient cycling enzymes; urease, phosphatase, and β-glucosidase. High throughput sequencing revealed that FM reduced the diversity of soil bacteria while having insignificant effects on fungal diversity. Although increasing FM rates reduced the relative abundance of the phyla Proteobacteria, its class members, the Gammaproteobacteria and Betaproteobacteria containing some N-cycling related genera, were stimulated. Also, FM stimulated the abundance of beneficial and lignocellulose degrading organisms. These included the bacterial phyla Actinobacteria, Bacteroidetes, Acidobacteria, Chloroflexi, and the fungal phylum Ascomycota. The distribution of the soil microbial community under FM rates was regulated by the changes in soil pH and the availability of soil nutrients. Since FM1 showed more promise in improving the growth properties of sugarcane, it could be more economical and sustainable for sugarcane production in clay-loam soils.


2022 ◽  
Author(s):  
Jiyu Liu ◽  
Matthew J Colloff ◽  
David Freudenberger

Abstract There is global interest in enhancing the ecosystem services provided by landscapes and catchments dominated by plantation (monoculture) forestry. Partial reversion of plantations to locally native species (reforestation) is one option. However, the ecological outcomes of this kind of plantation reversion are poorly known. The partial reforestation of a pine plantation (Pinus radiata D. Don 1836) in the Australian Capital Territory with native species following a wildfire provides a rare case study of the environmental consequences of such a reversion. We estimated changes in landscape functionality by measuring indices of water infiltration, nutrient cycling, and soil surface stability across five landscape-scale treatments after the 2003 Lower Cotter Catchment bushfire: (1) natural regeneration of a native forest burned in 2003, (2) burned pine plantation replanted to pines, (3) burned plantation replanted to native trees and shrubs, (4) burned plantation allowed to naturally regenerate, and (5) forest roads rehabilitated by planting native trees and shrubs. At 14 years after the fire, we found that the regenerating native forest had the highest indices of water infiltration, nutrient cycling, and soil surface stability. The burned pine plantation that was replanted to pines in 2005 had indices of functionality that were higher than the burned plantation areas that were either allowed to naturally regenerate to native eucalypt forest or were planted with native forest species. These two types of native forest rehabilitation treatments had only minor differences in functionality. The rehabilitated closed roads were the least functional. We found that a pine plantation at the closed canopy stage can supply regulating services of water infiltration, nutrient cycling, and soil surface stability comparable to a native forest at a similar stage postfire; however, a significant limitation of the plantation was its low ecosystem resilience. It required massive soil disturbance to replant postfire and long-term maintenance of an extensive unpaved road network. The active or passive rehabilitation of native forest is justified to improve the natural resilience to wildfire. However, this rehabilitation of a native forest following use as a pine plantation is a multidecade process in this relatively low-rainfall environment. Study Implications The 2003 Canberra bushfire destroyed the entire pine plantation at Lower Cotter Catchment, a water catchment in Australian Capital Territory, but also provided an opportunity to examine and quantify changes in ecosystem functions with different restoration treatments. Landscape Function Analysis, including three indices (water infiltration, nutrient cycling, and soil surface stability), was used in this study. Findings suggest that both native eucalyptus forests and pine plantations recovered to relatively high levels of functionality within just 15 years after the bushfire, compared with all other restoration treatments, but plantations of Pinus radiata are not resilient to wildfire from a commercial perspective. These results help to justify the controversial decision to restore the majority of the catchment with native species in 2005. However, long-term monitoring is needed to determine how long it will take for the replanted and natural regeneration treatments to approach the functionality of the native forest.


2022 ◽  
Author(s):  
Yajiao Wang ◽  
Yu Liu ◽  
Yuxing Wu ◽  
Nan Wu ◽  
Wenwen Liu ◽  
...  

Abstract Background: As genetic entities infecting and replicating only in bacteria, bacteriophages can regulate the community structure and functions of their host bacteria, but they are often overlooked because of their relatively low abundance. The ecological roles of bacteriophages in aquatic and forest environments have been widely explored, but those in agroecosystems remains limited. Here, we used metagenomic sequencing to analyze the diversity and interactions of bacteriophages and their host bacteria in soils from three typical rice agroecosystems in China: double cropping in Guangzhou, southern China, rice–wheat rotation cropping in Nanjing, eastern China and early maturing single cropping in Jiamusi, northeastern China. Bacteriophages were isolated and their functions on soil nitrogen cycling and effect on soil bacterial community structure were verified in pot inoculation experiments and Illumina MiSeq sequencing.Results: Soil bacterial and viral diversity and functions varied among the three agroecosystems. Genes detected in communities from the three agroecosystems were associated with typical functions; soil bacteria in Jiamusi were significantly enriched in genes related to carbohydrate metabolism, in Nanjing with xenobiotics biodegradation and metabolism, and in Guangzhou with virulence factors and scarce in secondary metabolite biosynthesis, which might lead to a significant occurrence of rice bacterial diseases. In the three ecosystems, 368 species of virus were detected. Notably, over-represented auxiliary carbohydrate-active enzyme (CAZyme) genes were identified in the viruses, which might assist host bacteria in metabolizing carbon, and 67.43% of these genes were present in Jiamusi. In bacteriophage isolation and inoculation experiments, Enterobacter bacteriophage-NJ reduced the nitrogen fixation capacity of soil by lysing N-fixing host bacteria and changed the soil bacterial diversity and community structure.Conclusions: Our results showed that diversity and function of paddy soil bacteria and viruses varied in the three agroecosystems. Soil bacteriophages can affect nutrient cycling by expressing auxiliary metabolic genes (AMGs) and lysing the host bacteria that are involved in biogeochemical cycles. These findings form a basis for better understanding bacterial and bacteriophage diversity in different rice agroecosystems, laying a solid foundation for further studies of soil microbial communities that support ecofriendly production of healthy rice.


2022 ◽  
Vol 9 (1) ◽  
pp. 1-8
Author(s):  
Cassio Ricardo Goncalves Da Costa ◽  
Marcos Gomes da Silva ◽  
Carlos Antonio Gonçalves Da Costa ◽  
Rayane Sley Melo Da Cunha ◽  
Marcia Mayara De Sousa ◽  
...  

Studies that allow the understanding of the nutrient cycling processes and maintenance of soil fertility in the caatinga biome are necessary to assist in the proposal of possible management forms, in view of the sustainability of this ecosystem, to provide data in an area of knowledge the quantification of glomalin can be a good indicator of changes caused by the use of the soil and, in turn, therefore, it can become a good indicator of its recovery because it is correlated with important attributes of the soil. In addition to providing data of this process for a better understanding of the soils of the country, a study on this subject will also contribute with a new database for global monitoring. Research that can follow the regeneration rate of Caatinga forests in the Semi-arid will allow the development of models relating to several variables, not currently available for the semi-arid tropical region.


2022 ◽  
pp. 133-160
Author(s):  
James B. Deemy ◽  
Alice F. Besterman ◽  
Britney M. Hall ◽  
Kaelyn N. Tyler ◽  
Kimberly K. Takagi
Keyword(s):  

2022 ◽  
pp. 1132-1149
Author(s):  
Pooja Gokhale Sinha

Around 1.6 billion people in the world are directly dependent on forests for food, fodder, fuel, shelter, and livelihood, out of which 60 million are entirely dependent on forests. Forests silently provide us with ecosystem services such as climate regulation, carbon sequestration, harbouring biodiversity, synchronizing nutrient cycling, and many more. Tropical Dry Forests (TDF's) occupy around 42% of total forest area of the tropics and subtropics and facilitate sustenance of world's marginalized populations. Change in vegetation composition and distribution, deflected succession, carbon sequestration potential, nutrient cycling and symbiotic associations would affect TDF at ecosystem level. At species level, climate change will impact photosynthesis, phenology, physiognomy, seed germination, and temperature-sensitive physiological processes. In order to mitigate the effects of climate change, specific mitigation and adaptation strategies are required for TDF that need to be designed with concerted efforts from scientists, policy makers and local stakeholders.


Sign in / Sign up

Export Citation Format

Share Document