parent material
Recently Published Documents


TOTAL DOCUMENTS

1229
(FIVE YEARS 343)

H-INDEX

44
(FIVE YEARS 8)

CATENA ◽  
2022 ◽  
Vol 210 ◽  
pp. 105898
Author(s):  
Xin Zhang ◽  
Meng-Jia Li ◽  
Chao Yang ◽  
Lin-Qing Zhan ◽  
Wei Wu ◽  
...  

2024 ◽  
Vol 84 ◽  
Author(s):  
M. S. H. Bhuiyan ◽  
M. A. Malek ◽  
R. M. Emon ◽  
M. K. Khatun ◽  
Mohammad Moneruzzaman Khandaker ◽  
...  

Abstract In soybean breeding program, continuous selection pressure on traits response to yield created a genetic bottleneck for improvements of soybean through hybridization breeding technique. Therefore an initiative was taken to developed high yielding soybean variety applying mutation breeding techniques at Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Bangladesh. Locally available popular cultivar BARI Soybean-5 was used as a parent material and subjected to five different doses of Gamma ray using Co60. In respect to seed yield and yield attributing characters, twelve true breed mutants were selected from M4 generation. High values of heritability and genetic advance with high genotypic coefficient of variance (GCV) for plant height, branch number and pod number were considered as favorable attributes for soybean improvement that ensure expected yield. The mutant SBM-18 obtained from 250Gy provided stable yield performance at diversified environments. It provided maximum seed yield of 3056 kg ha-1 with highest number of pods plant-1 (56). The National Seed Board of Bangladesh (NSB) eventually approved SBM-18 and registered it as a new soybean variety named ‘Binasoybean-5’ for large-scale planting because of its superior stability in various agro-ecological zones and consistent yield performance.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 135
Author(s):  
Demetrios E. Tsesmelis ◽  
Christos A. Karavitis ◽  
Kleomenis Kalogeropoulos ◽  
Efthimios Zervas ◽  
Constantina G. Vasilakou ◽  
...  

Natural resources degradation poses multiple challenges particularly to environmental and economic processes. It is usually difficult to identify the degree of degradation and the critical vulnerability values in the affected systems. Thus, among other tools, indices (composite indicators) may also describe these complex systems or phenomena. In this approach, the Water and Land Resources Degradation Index was applied to the fifth largest Mediterranean island, Crete, for the 1999–2014 period. The Water and Land Resources Degradation Index uses 11 water and soil resources related indicators: Aridity Index, Water Demand, Drought Impacts, Drought Resistance Water Resources Infrastructure, Land Use Intensity, Soil Parent Material, Plant Cover, Rainfall, Slope, and Soil Texture. The aim is to identify the sensitive areas to degradation due to anthropogenic interventions and natural processes, as well as their vulnerability status. The results for Crete Island indicate that prolonged water resources shortages due to low average precipitation values or high water demand (especially in the agricultural sector), may significantly affect Water and Land degradation processes. Hence, Water and Land Resources Degradation Index could serve as an extra tool to assist policymakers to improve their decisions to combat Natural Resources degradation.


SOIL ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 1-15
Author(s):  
Zuzana Frkova ◽  
Chiara Pistocchi ◽  
Yuliya Vystavna ◽  
Katerina Capkova ◽  
Jiri Dolezal ◽  
...  

Abstract. At the early stages of pedogenesis, the dynamics of phosphorus (P) in soils are controlled by microbial communities, the physicochemical properties of the soil and the environmental conditions. While various microorganisms involved in carrying out biogeochemical processes have been identified, little is known about the actual contribution of microbial processes, such as organic P hydrolysis and microbial P turnover, to P cycling. We thus focused on processes driven by microbes and how they affect the size and cycling of organic and inorganic soil P pools along a soil chronosequence in the Chamser Kangri glacier forefield (Western Himalayas). The rapid retreat of the glacier allowed us to study the early stages of soil formation under a cold arid climate. Biological P transformations were studied with the help of the isotopic composition of oxygen (O) in phosphate (δ18OP) coupled to sequential P fractionation performed on soil samples (0–5 cm depth) from four sites of different age spanning 0 to 100–150 years. The P bound to Ca, i.e., 1 M HCl-extractable P, still represented 95 % of the total P stock after approximately 100 years of soil development. Its isotopic composition was similar to the parent material at the most developed site. Primary phosphate minerals, possibly apatite, mostly comprised this pool. The δ18OP of the available P and the NaOH-extractable inorganic P instead differed from that of the parent material, suggesting that these pools underwent biological turnover. The δ18OP of the available P was mostly controlled by the microbial P, suggesting fast exchanges occurred between these two pools possibly fostered by repeated freezing–thawing and drying–rewetting cycles. The release of P from organic P becomes increasingly important with soil age, constituting one-third of the P flux to available P at the oldest site. Accordingly, the lighter isotopic composition of the P bound to Fe and Al oxides at the oldest site indicated that this pool contained phosphate released by organic P mineralization. Compared to previous studies on early pedogenesis under alpine or cold climate, our findings suggest a much slower decrease of the P-bearing primary minerals during the first 100 years of soil development under extreme conditions. However, they provide evidence that, by driving short-term P dynamics, microbes play an important role in controlling the redistribution of primary P into inorganic and organic soil P pools.


2022 ◽  
Author(s):  
Bowei Zhang ◽  
Juhe Zhang

Abstract The important research content and basis of exploration and development is to evaluate the reservoir property, oil bearing property, fluidity and compressibility of shale reservoir.The key of exploration and development is to evaluate the oil-bearing and fluidity of shale reservoir.In this paper, the "shale oil content and fine components synchronous experimental analysis device" is used. Five temperature ranges of 30 ℃-90 ℃, 90 ℃-150 ℃, 100 ℃- 200 ℃, 150 ℃-250 ℃ and 250 ℃-300 ℃ were adopted. The heating rate of each temperature segment was 25 ℃ / min, and the final temperature was kept constant for 5 min. The oil content of shale (pyrolysis S1) was cut into five fractions.Simultaneous determination of oil content and molecular composition of shale fractions,and the external standard method was used to evaluate the oil content and fluidity.The results show that the five fractions of shale are mainly composed of nC1-nC9 gas, nC10-nC15 gasoline, nC12-nC20 kerosene, nC15-nC22 diesel oil and nC18-nC26 heavy oil of the first member of Qingshangkou formation in Songliao basin.There are differences in the fractionation and oil content characteristics of samples with different maturity in different wells.The parent material, properties and quality of crude oil are reflected in shale. The higher the maturity of shale oil is, the more light components are, the larger the light / heavy ratio parameter value of (gasoline + kerosene + diesel) and heavy oil is, the better the fluidity is, and the easier to exploit effectively.


Author(s):  
Krystyna Ciarkowska ◽  
Anna Miechówka

AbstractWe investigated trace-metal (TM)––Zn, Pb and Cd––concentrations and spatial distributions in the uppermost layers of non-forest soils from Tatra National Park (West Carpathians). We aimed to determine the main factors affecting the distribution of TMs, as well as the risk they posed to the environment. TM concentrations were compared to the target and intervention values established by the Dutch Ministry. Principle component analysis was used to identify the potential factors affecting TM accumulation, with two-factor analysis being applied to further examine the importance of any given factor. To examine the regularity of the TM distribution, semivariograms were created. The semivariograms of Cd and Pb were similar, suggesting a moderate spatial dependence for these metal concentrations, while the Zn variogram indicated a lack of spatial continuity for this metal. We established that the Zn, Pb and Cd exceeded target levels and at some sites, Cd exceeded the intervention values, posing a strong ecological risk to the environment. Our study confirmed that the parent rock was the most important factor affecting the TM accumulation. The carbonate-free soils differed from carbonate soils in the second important factor affecting TM accumulation, for carbonate-free soils it was location when for carbonate soils–TM content in the parent material. The Zn, Pb and Cd distribution patterns indicated that Cd, but also to a lesser degree Pb and Zn, accumulation mainly resulted from long-range transport from industrialised areas, while the Zn concentrations were also affected by local sources, such as the historical mining of Zn ore.


2022 ◽  

<p>The concentrations and comparisons of total and available metals Cd, Cr, Ni, Pb and the metalloid As were examined in two adjacent acid forest soils in Greece under oak and beech together with the dependency of their availability. It was found that the soil in the beech plot had higher concentrations of total elements with the exception of the litter layer (L) where most metals did not differ. It is probable that the parent material of the beech soil contained some metamorphic mafic material. The surface soils for both stands were moderately enriched with Pb, Cd and As, whereas for Cr and Ni the enrichment was minimal. The concentrations of available elements (extracted with DTPA) were higher in the beech soil. The availability of most metals was affected by the pH, the organic C, the ratio of C/N and the total concentration of the metals. Through a Principal Component Analysis (PCA) analysis, it was found that 63-75% of the concentrations variance of the available metals was explained. The percentages of available metals with regard to their total concentrations in soils were higher in the beech plot in the FH layer but in the mineral layers, they did not differ apart from Pb. The concentrations of the metals in the leaves of both species in three consecutive years did not differ with the exception of Cd, the concentration of which was higher in the beech leaves.</p>


Author(s):  
Serafeim Bakalakos ◽  
Ioannis Kalogeris ◽  
Vissarion Papadopoulos ◽  
Manolis Papadrakakis ◽  
Panagiotis Maroulas ◽  
...  

Abstract The present paper investigates the thermal properties of carbon nanotube reinforced polyethylene and specifically its potential as highly conductive material. To this end, an integrated approach is proposed combining both numerical and experimental procedures. First, in order to study conductive heat transfer in two-phase materials with imperfect interfaces, a detailed numerical model is developed based on the extended finite element method (XFEM), where material interfaces are modeled using the level set method. The thermal conductance at the interface of the carbon nanotubes and the polymer matrix is considered to be an unknown model parameter, the value of which is obtained by utilizing a series of experimental measurements of the composite material’s effective conductivity. The interfacial thermal conductance parameter value is inferred by calibrating the numerically predicted effective conductivity to the series of the corresponding experimental measurements. Once this parameter is estimated, the data-informed model is subsequently employed to provide reliable predictions of the effective conductivity of the composite for various weight fractions and configurations of carbon nanotubes in the parent material. Furthermore, microstructural morphologies that provide upper limits on the effective conductivity of the composite are identified via sensitivity analysis, demonstrating its potential as a highly conductive material.


2022 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
Menghui Zhu ◽  
Chao Wei ◽  
Wei Guo ◽  
Zhizhou Zhang ◽  
Jinglei Ouyang ◽  
...  

Although laser drilling of carbon fibre-reinforced polymer (CFRP) composites offers the advantages of zero tool-wear and avoidance of fibre delamination compared with mechanical drilling, it consumes considerably more energy during the drilling process. This research shows that by using a new, stepped parameter parallel ring laser hole drilling method, an energy saving of 78.10% and an 18.37 gCO2 reduction for each hole, while improving productivity by more than 300%, can be achieved in laser drilling of 6 mm diameter holes in CFRP sheets of 2 mm in thickness, compared with previous laser drilling methods under the same drilling quality. The key reason for this is an increase in energy input to the inner rings enabling more rapid removal of the material, while the lower energy input for the outer ring provides a shielding trench to reduce the heat loss into the parent material. The results are compared with single-ring laser drilling and multiple-ring laser drilling with constant processing parameters, and a discussion is given on comparing with mechanical drilling and future prospects, including a combined mechanical drilling and laser pre-scribing process.


2022 ◽  
Vol 1 ◽  
Author(s):  
Anika Gebauer ◽  
Ali Sakhaee ◽  
Axel Don ◽  
Matteo Poggio ◽  
Mareike Ließ

Site-specific spatially continuous soil texture data is required for many purposes such as the simulation of carbon dynamics, the estimation of drought impact on agriculture, or the modeling of water erosion rates. At large scales, there are often only conventional polygon-based soil texture maps, which are hardly reproducible, contain abrupt changes at polygon borders, and therefore are not suitable for most quantitative applications. Digital soil mapping methods can provide the required soil texture information in form of reproducible site-specific predictions with associated uncertainties. Machine learning models were trained in a nested cross-validation approach to predict the spatial distribution of the topsoil (0–30 cm) clay, silt, and sand contents in 100 m resolution. The differential evolution algorithm was applied to optimize the model parameters. High-quality nation-wide soil texture data of 2,991 soil profiles was obtained from the first German agricultural soil inventory. We tested an iterative approach by training models on predictor datasets of increasing size, which contained up to 50 variables. The best results were achieved when training the models on the complete predictor dataset. They explained about 59% of the variance in clay, 75% of the variance in silt, and 77% of the variance in sand content. The RMSE values ranged between approximately 8.2 wt.% (clay), 11.8 wt.% (silt), and 15.0 wt.% (sand). Due to their high performance, models were able to predict the spatial texture distribution. They captured the high importance of the soil forming factors parent material and relief. Our results demonstrate the high predictive power of machine learning in predicting soil texture at large scales. The iterative approach enhanced model interpretability. It revealed that the incorporated soil maps partly substituted the relief and parent material predictors. Overall, the spatially continuous soil texture predictions provide valuable input for many quantitative applications on agricultural topsoils in Germany.


Sign in / Sign up

Export Citation Format

Share Document