scholarly journals Mild hepatic iron overload in dysmetabolic hyperferritinemia: MRI may overestimate the liver iron concentration values

2011 ◽  
Vol 91 (6) ◽  
pp. 961-961 ◽  
Author(s):  
Agustin Castiella ◽  
Jose M. Alustiza ◽  
Eva Zapata ◽  
Jose I. Emparanza ◽  
Pedro Otazua ◽  
...  
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4034-4034
Author(s):  
Giuseppina Calvaruso ◽  
Angela Vitrano ◽  
Francesco Gioia ◽  
Filippo Cassarà ◽  
Saveria Campisi ◽  
...  

Abstract The main cause of mortality in the thalassemia population remains iron-induced cardiac failure (Borga-Pignatti et al Ann N Y Acad Sci 2005); in addition iron overload in the liver, pancreas and other organs causes progressive damage . Iron overload in human tissues can be treated by chelation therapy. Thus, early detection of iron overload is crucial. Nowdays liver iron overload in human tissues can be monitored noninvasively by magnetic resonance imaging (MRI) by two techniques, T2* and R2 MRI (Ferriscan®). There is not too much literature that compares the two methods in hemoglobinopathies. Our center instituted a network, LICNET (Liver Iron Cutino Network), promoted from Piera Cutino partnership and addressed to the diagnostics of iron overload in liver by R2 MRI in patients with hemoglobinopathies. Patients with thalassemia Major (TM), thalassemia intermedia (TI) and Sickle-Cell/b-thalassemia (S/b-T)), were retrospectively considered for this study. Primary endpoint was to evaluate agreement between T2* and R2 MRI measures of liver iron concentration (LIC) using a Bland-Altman (B-A) method that compares differences between observations on the same patient made with the two methods (Bland & Altman Lancet 1986). Secondary endpoints were to evaluate: 1) hepatic iron overload in our population; 2) difference in R2 LIC in patients with different chelation regimen; 3) relation between hepatic iron overload versus transfusion requirements. LIC was measured by calculating T2* and by measuring R2 using commercial Ferriscan® technique (St Pierre TG et al Blood 2005). To convert liver T2* to LIC a regression equation was used: LIC T2*=0.0254×R2*+0.202 (where R2*=1000/T2*) (Wood JC et al Blood 2005). LICNET involves 14 Italian thalassemia and radiology centers. Overall 301 adult patients with hemoglobinopathies (TM (177), TI (74) and S/b-T (50)) underwent to iron evaluation from 2012 to 2014. The mean age at R2 MRI evaluation was 33.2±10.7, 41.2±13.8 and 38.7±13.9, respectively in TM, TI and S/b-T. Iron overload was assessed in patients where most of the patients have been treated with deferasirox (DFX) therapy (TM (28.8%), TI (25.7%) and S/b-T (26.0%)), the remaining cohorts were treated with deferoxamine (DFO), deferiprone (DFP) chelation both alone and in combination or sequential administration. One hundred and twelve observations were measured both for T2* and R2. Concerning the primary endpoint, in the B-A plot it was observed that T2* method yielded a higher LIC than Ferriscan (differences>0), the estimated bias (estimated mean difference) was 2.6 (95% LoA – 17.8; 22.9), and this difference increased at high levels of iron content (Estim. Diff= -1.18+0.32Average mg/g/dw, p=0.0001) (Fig. 1). Secondary endpoints showed that hepatic iron overload determined by T2* was not statistically different among 3 cohorts of patients while it was border line by LIC-R2 (p=0.2608 and p=0.0672). Furthermore, DFX treated patients showed lower LIC-R2 determination in comparison with other treatment (Table 1). Finally, the increase of transfusion requirements was not associated with more severe iron overload in patients with TI and S/b-T. This may be in relation with compliance and type of chelation treatment. These findings show that LIC-R2 (Ferriscan®) is crucial to have accurate and reliable measures for iron body burden control in hemoglobinopathies. Table 1. Liver iron concentration determined by Ferriscan (R2) in patients with hemoglobinopathies treated by different chelation regimens. TM TI S/ b -T Chelation Therapy LIC R2 (mean±sd) LIC R2 (mean±sd) LIC R2 (mean±sd) DFO 5.3±5.7 8.5±7.7 20.9±19.9 DFP 12.9±12.3 12.5±8.1 12.7±20.2 DFX 7.6±9.2 6.1±7.1 3.7±3.2 Combined DFO+DFP 10.1±12.1 17.8 (n=1) --- Sequential DFO-DFP 4.3±3.1 --- --- Combined DFO+DFX --- 9.7 (n=1) --- Figure 1. Bland- Altman plot of Liver iron concentration: difference LIC T2* and LIC-R2 versus average of values measured by T2* and Ferriscan Figure 1. Bland- Altman plot of Liver iron concentration: difference LIC T2* and LIC-R2 versus average of values measured by T2* and Ferriscan Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4833-4833
Author(s):  
Alessia Pepe ◽  
Laura Pistoia ◽  
Domenico D'Ascola ◽  
Maria Rita Gamberini ◽  
Francesco Gagliardotto ◽  
...  

Abstract Introduction. The aim of this multicenter study was to evaluate in thalassemia major (TM) if the cardiac efficacy of the three iron chelators in monotherapy was influenced by hepatic iron levels over a follow up of 18 months. Methods. Among the 2551 TM patients enrolled in the MIOT (Myocardial Iron Overload in Thalassemia) network we evaluated prospectively the 98 patients those with an MR follow up study at 18±3 months who had been received one chelator alone between the 2 MR scans and who showed evidence of significant cardiac iron (global heart T2*<20 ms) at the basal MRI. Iron overload (IO) was measured by T2* multiecho technique. We used cardiac R2* (equal to 1000/T2*) because cardiac R2* is linearly proportional to cardiac iron and hepatic T2* values were converted into liver iron concentration (LIC) values. Results. We identified 3 groups of patients: 47 treated with deferasirox (DFX), 11 treated with deferiprone (DFP) and 40 treated with desferrioxamine (DFO). Percentage changes in cardiac R2* values correlated with changes in LIC in both DFX (R=0.469; P=0.001) and DFP (R=0.775; P=0.007) groups. All patients in these 2 groups who lowered their LIC by more than 50% improved their cardiac iron (see Figure 1). Percentage changes in cardiac R2* were linearly associated to the log of final LIC values in both DFX (R=0.437; P=0.002) and DFP groups (R=0.909; P<0.0001). Percentage changes in cardiac R2* were not predicted by initial cardiac R2* and LIC values. In each chelation group patients were divided in subgroups according to the severity of baseline hepatic iron overload (no, mild, moderate, and severe IO). The changes in cardiac R2* were comparable among subgroups (P=NS) (Figure 2). Conclusion. In patients treated with DFX and DFP percentage changes in cardiac R2* over 18 months were associated with final LIC and percentage LIC changes. In each chelation group percentage changes in cardiac R2* were no influenced by initial LIC or initial cardiac R2*. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures Pepe: Chiesi Farmaceutici and ApoPharma Inc.: Other: Alessia Pepe is the PI of the MIOT project, that receives no profit support from Chiesi Farmaceutici S.p.A. and ApoPharma Inc..


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4900-4900
Author(s):  
Antonella Meloni ◽  
Aurelio Maggio ◽  
Carlo Cosmi ◽  
Alfonso D'Ambrosio ◽  
Elena Facchini ◽  
...  

Abstract Background. In thalassemia intermedia (TI) patients no observational study prospectively evaluated in the real life the efficacy of the desferrioxamine (DFO) therapy in removing or preventing iron overload from the heart and the liver by T2* Magnetic Resonance Imaging (MRI). The efficacy endpoint of this study is represented by the changes in cardiac T2* and MRI LIC (liver iron concentration) values in non-transfusion dependent (NTD) TI patients after 18 months of desferrioxamine therapy. Methods. Among the 325 TI patients enrolled in the MIOT (Myocardial Iron Overload in Thalassemia) network, we selected 129 TI patients NTD. We considered 29 patients who had been received DFO alone between the two MRI scans. Cardiac iron overload was assessed by the T2* multiecho technique. Hepatic T2* values were converted into liver iron concentration (LIC) values. Results. Mean age was 39.69 ± 8.12 years and 14 (48.3%) patients were females. Patients started regular chelation therapy at a mean age of 21.92 ± 15.89 years. The mean administered dosage of DFO via subcutaneous route was 38.46 ± 10.27 mg/kg body weight on 3.32 ± 1.54 days/week. The percentage of patients with excellent/good levels of compliance to the chelation treatment was 82.1%. At baseline only one patient showed cardiac iron overload (global heart T2*=15.23 ms) but he recovered at the FU (global heart T2*=26.93 ms). All patients without cardiac iron maintained the same status at the follow-up (FU). Eighteen patients (62.1%) had hepatic iron overload (MRI LIC ≥3 mg/g/dw) at the baseline. For this subgroup, the baseline and the FU LIC values were, respectively, 9.15 ± 7.97 mg/g/dw and 7.41 ± 6.28 mg/g/dw. The reduction in MRI LIC values was not significant (P=0.102). Out of the 11 patients with a baseline MRI LIC <3 mg/g/dw, only one (9.1%) showed hepatic iron at the FU. The Figure shows the evolution of different hepatic iron overload risk classes between the baseline and the FU. Conclusions. In this small population of sporadically or non transfused TI patients, DFO showed 100% efficacy in maintaining a normal global heart T2* value. As regards as the hepatic iron overload, the DFO therapy did not prevent the transition to a worst class in 2 patients. Figure 1 Figure 1. Disclosures Pepe: Chiesi: Speakers Bureau; ApoPharma Inc.: Speakers Bureau; Novartis: Speakers Bureau.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2159-2159 ◽  
Author(s):  
Alessia Pepe ◽  
Tommaso Casini ◽  
Liana Cuccia ◽  
Francesco Sorrentino ◽  
Rosamaria Rosso ◽  
...  

Abstract Purpose: The aim of this multi-centre study was to retrospectively assess in thalassemia major (TM) if deferiprone (DFP) had a dose-dependent effect on liver iron concentration (LIC) assessed by quantitative magnetic resonance imaging (MRI). Methods: Among the 958 TM patients enrolled in the MIOT (Myocardial Iron Overload in Thalassemia) network, we identified hose with an MRI follow up study at 18±3 months who had been received DFP monotherapy and had no changes in dose of DFP between the 2 MRI scans. Patients were divided into two groups according to the DFP dose: 79 patients with ≤ 75 mg/kg/d (group 1) and 39 with > 75 mg/kg/d (group 2). Hepatic iron overload was measured by the T2* multiecho technique and T2* values were converted into LIC values using the calibration curve introduced by Wood et al. Results: The two groups had comparable baseline MRI LIC values. The table shows the evolution of different iron overload risk classes between the baseline and the FU MRI. The percentage of patients that worsened their status was significantly higher in group 1 than in group 2 (26.6% vs 7.7%; P=0.016). Subgroup analysis in patients with hepatic iron overload at baseline (MRI LIC > 3mg/g/dw) was conducted: 48 patients from group 1 (DFP dose: mean 70.6±11.2 mg/kg/d, median 75 mg/kg/d) and 30 from group 2 (DFP dose: mean 85.2±6.6 mg/kg/d, median 84 mg/kg/d). The two subgroups had comparable baseline MRI LIC values (10.2±8.1 mg/g dw vs 11.1±8.7 mg/g dw (P=0.314). While the mean change in subgroup 2 ( -1.8±6.3mg/g/dw, P=0.131) was more favourable than in subgroup 1 (+0.1±7.7 mg/g/dw, P=0.903), the change in MRI LIC values did not reach statistical significance between the two subgroups (P=0.579) (Figure 1), which may be due to small cohort evaluated. Conclusions: In TM patients the worsening in MRI LIC can be prevented by increasing the dose of deferiprone above the widely used regimen of 75 mg/kg body weight. Our results are consistent with the iron balance studies performed by Grady RW et al. Table 1. Evolution of different iron overload risk classes between the baseline and the FU MRI. The underlined numbers represent the patients who remained in the same risk class. DFP dose ≤ 75 mg/kg/d (N=79) FU LIC <3 mg/g dw 3-7 mg/g dw 7-15 mg/g dw ≥15 mg/g dw Baseline LIC <3 mg/g dw (N=31) 21 7 3 0 3-7 mg/g dw (N=22) 10 4 6 2 7-15 mg/g dw (N=14) 0 6 5 3 ≥15 mg/g dw (N=12) 1 0 5 6 Total at the FU 32 17 19 11 DFP dose > 75 mg/kg/d (N=39) FU LIC <3 mg/g dw 3-7 mg/g dw 7-15 mg/g dw ≥15 mg/g dw Baseline LIC <3 mg/g dw (N=9) 6 2 1 0 3-7 mg/g dw (N=14) 3 11 0 0 7-15 mg/g dw (N=8) 0 4 4 0 ≥15 mg/g dw (N=8) 1 0 2 5 Total at the FU 10 17 7 5 Figure 1. Changes of MRI LIC values in patients with basal MRI LIC > 3 mg/g/dw. Figure 1. Changes of MRI LIC values in patients with basal MRI LIC > 3 mg/g/dw. Disclosures Pepe: Chiesi: Speakers Bureau; ApoPharma Inc: Speakers Bureau; Novartis: Speakers Bureau.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4829-4829 ◽  
Author(s):  
Mehran Karimi ◽  
Fatemeh Amirmoezi ◽  
Sezaneh Haghpanah ◽  
Seyed pouria Ostad ◽  
Mehrzad Lotfi ◽  
...  

Abstract Background: B-Thalassemia intermediate (B-TI) is a genetic disease that is milder than beta thalassemia major. The accumulation of iron in different organs causes tissue damage. The T2* magnetic resonance imaging (MRI) technique is currently the gold standard for iron load detection. However, it is expensive and needs an expert radiologist to report findings. Therefore, we conducted this study to determine an optimal cut-off value of ferritin in proportion to T2 MRI for early detection of cardiac and hepatic iron overload in patients with beta thalassemia intermediate. Methods: This cross-sectional study was conducted on 108 patients with B-TI who referred to tertiary Hospital, Shiraz University of Medical Sciences, Shiraz, Iran. Serum ferritin, hepatic and cardiac T2 MRI were assessed. The ROC curve was used to determine the sensitivity and specificity of cut-off value. Results: Serum ferritin levels showed a statistically significant negative correlation with T2 hepatic MRI (r= -0.290, P value=0.003) and positive correlation with LIC (r= 0.426, P value ˂ 0.001) in the patients with BTI. However, T2 cardiac MRI was not significantly correlated with serum ferritin levels (P value= 0.073).According to the analysis of ROC curves, the best cut-off value for ferritin to show early diagnosis of liver iron overload was 412 ng/ml. calculated sensitivities and specificities were 0.78 and 0.82 for T2 liver MRI and 0.76 and 0.86 for liver iron concentration (LIC) respectively. Conclusion: Serum ferritin levels of 412 ng/ml might be considered as a cut-off point to evaluate hepatic iron overload before using expensive, not readily available T2 MRI. This level of serum ferritin (around 500 ng/ml) could be considered for starting iron chelation therapy in patients with B-TI in areas where T2 MRI is not available. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2252-2252
Author(s):  
Antonella Meloni ◽  
Giovan Battista Ruffo ◽  
Daniele De Marchi ◽  
Antonio Cardinale ◽  
Anna Pietrapertosa ◽  
...  

Abstract Introduction Sickle-thalassemia results from the combined heterozygosity for sickle-cell and β-thalassemia genes. This study evaluates myocardial and hepatic iron overload and cardiac function in Italian patients and explores their correlation with transfusions, age and sex. Methods Fifty-nine sickle-thalassemia patients (29 males, mean age 35.6±14.1 years), enrolled in the MIOT network underwent magnetic resonance imaging (MRI). T2* value for all 16 myocardial segments and global heart T2* value were calculated. Hepatic T2* value was converted into liver iron concentration (LIC). Cine images were acquired to quantify biventricular volumes and ejection fraction (EF). Results 55 (93%) patients had all segmental T2* values normal (>20 ms). Of the 4 patients with abnormal segmental T2* values, all showed an heterogeneous myocardial iron overload (some segments with T2*>20 ms and other with T2*<20 ms) and only one had a global T2*<20 ms. The mean global heart T2* value was 34.4±6.2 ms. The mean LIC was 5.9±6.5 mg/g/dw and 30 patients (50.8%) had a pathological value (≥ 3 mg/g dw). There was a statistically significant positive correlation between global heart T2* and age but with poor linearity (R=0.368; P=0.004) and there was not a significant correlation between age and LIC. Males and females had comparable global heart T2* values and LIC values. Twenty patients were regularly transfused, 32 received sporadic transfusions while 7 were not transfused. The comparison among the three groups is shown in Table 1. We did not find significant differences in the global heart T2* value while patients regularly transfused had significantly higher LIC than sporadically transfused patients. Biventricular volumes indexed by body surface area and ejection fractions were comparable among the groups. Conclusions In respect of MIO, the sickle/thalassemia patients are similar to patients with homozygous SCD for which iron overloading is relatively rare. Hepatic iron overload may develop also in no regularly-transfused patients, maybe due to increased absorption of iron from the digestive tract, characteristic of both SCD and thalassemia intermedia patients. This finding underlines the importance to monitor by MRI also no regularly transfused sickle/thalassemia patients. Disclosures: No relevant conflicts of interest to declare.


Hematology ◽  
2013 ◽  
Vol 2013 (1) ◽  
pp. 447-456 ◽  
Author(s):  
John Porter ◽  
Maciej Garbowski

Abstract The aims of this review are to highlight the mechanisms and consequences of iron distribution that are most relevant to transfused sickle cell disease (SCD) patients and to address the particular challenges in the monitoring and treatment of iron overload. In contrast to many inherited anemias, in SCD, iron overload does not occur without blood transfusion. The rate of iron loading in SCD depends on the blood transfusion regime: with simple hypertransfusion regimes, rates approximate to thalassemia major, but iron loading can be minimal with automated erythrocyte apheresis. The consequences of transfusional iron overload largely reflect the distribution of storage iron. In SCD, a lower proportion of transfused iron distributes extrahepatically and occurs later than in thalassemia major, so complications of iron overload to the heart and endocrine system are less common. We discuss the mechanisms by which these differences may be mediated. Treatment with iron chelation and monitoring of transfusional iron overload in SCD aim principally at controlling liver iron, thereby reducing the risk of cirrhosis and hepatocellular carcinoma. Monitoring of liver iron concentration pretreatment and in response to chelation can be estimated using serum ferritin, but noninvasive measurement of liver iron concentration using validated and widely available MRI techniques reduces the risk of under- or overtreatment. The optimal use of chelation regimes to achieve these goals is described.


Sign in / Sign up

Export Citation Format

Share Document