scholarly journals Dynamics of epidemic spreading on connected graphs

2021 ◽  
Vol 82 (6) ◽  
Author(s):  
Christophe Besse ◽  
Grégory Faye
2021 ◽  
Vol 105 (4) ◽  
pp. 3819-3833
Author(s):  
Haili Guo ◽  
Qian Yin ◽  
Chengyi Xia ◽  
Matthias Dehmer

2021 ◽  
Vol 1751 ◽  
pp. 012023
Author(s):  
F C Puri ◽  
Wamiliana ◽  
M Usman ◽  
Amanto ◽  
M Ansori ◽  
...  
Keyword(s):  

2019 ◽  
Vol 17 (1) ◽  
pp. 1490-1502 ◽  
Author(s):  
Jia-Bao Liu ◽  
Muhammad Javaid ◽  
Mohsin Raza ◽  
Naeem Saleem

Abstract The second smallest eigenvalue of the Laplacian matrix of a graph (network) is called its algebraic connectivity which is used to diagnose Alzheimer’s disease, distinguish the group differences, measure the robustness, construct multiplex model, synchronize the stability, analyze the diffusion processes and find the connectivity of the graphs (networks). A connected graph containing two or three cycles is called a bicyclic graph if its number of edges is equal to its number of vertices plus one. In this paper, firstly the unique graph with a minimum algebraic connectivity is characterized in the class of connected graphs whose complements are bicyclic with exactly three cycles. Then, we find the unique graph of minimum algebraic connectivity in the class of connected graphs $\begin{array}{} {\it\Omega}^c_{n}={\it\Omega}^c_{1,n}\cup{\it\Omega}^c_{2,n}, \end{array}$ where $\begin{array}{} {\it\Omega}^c_{1,n} \end{array}$ and $\begin{array}{} {\it\Omega}^c_{2,n} \end{array}$ are classes of the connected graphs in which the complement of each graph of order n is a bicyclic graph with exactly two and three cycles, respectively.


2021 ◽  
Vol 344 (7) ◽  
pp. 112376
Author(s):  
John Engbers ◽  
Lauren Keough ◽  
Taylor Short

2019 ◽  
Vol 342 (11) ◽  
pp. 3047-3056
Author(s):  
Chengfu Qin ◽  
Weihua He ◽  
Kiyoshi Ando

2021 ◽  
Vol 104 ◽  
pp. 29-42
Author(s):  
Yunlong An ◽  
Xi Lin ◽  
Meng Li ◽  
Fang He

2021 ◽  
Vol 37 (3) ◽  
pp. 907-917
Author(s):  
Martin Kreh ◽  
Jan-Hendrik de Wiljes

AbstractIn 2011, Beeler and Hoilman generalized the game of peg solitaire to arbitrary connected graphs. In the same article, the authors proved some results on the solvability of Cartesian products, given solvable or distance 2-solvable graphs. We extend these results to Cartesian products of certain unsolvable graphs. In particular, we prove that ladders and grid graphs are solvable and, further, even the Cartesian product of two stars, which in a sense are the “most” unsolvable graphs.


Sign in / Sign up

Export Citation Format

Share Document