epidemic spreading
Recently Published Documents


TOTAL DOCUMENTS

603
(FIVE YEARS 234)

H-INDEX

44
(FIVE YEARS 10)

2022 ◽  
Vol 420 ◽  
pp. 126875
Author(s):  
Xiao-Long Peng ◽  
Chun-Yan Li ◽  
Hong Qi ◽  
Gui-Quan Sun ◽  
Zhen Wang ◽  
...  
Keyword(s):  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Giacomo Rapisardi ◽  
Ivan Kryven ◽  
Alex Arenas

AbstractPercolation is a process that impairs network connectedness by deactivating links or nodes. This process features a phase transition that resembles paradigmatic critical transitions in epidemic spreading, biological networks, traffic and transportation systems. Some biological systems, such as networks of neural cells, actively respond to percolation-like damage, which enables these structures to maintain their function after degradation and aging. Here we study percolation in networks that actively respond to link damage by adopting a mechanism resembling synaptic scaling in neurons. We explain critical transitions in such active networks and show that these structures are more resilient to damage as they are able to maintain a stronger connectedness and ability to spread information. Moreover, we uncover the role of local rescaling strategies in biological networks and indicate a possibility of designing smart infrastructures with improved robustness to perturbations.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 105
Author(s):  
Robert Jankowski ◽  
Anna Chmiel

Modelling the epidemic’s spread on multiplex networks, considering complex human behaviours, has recently gained the attention of many scientists. In this work, we study the interplay between epidemic spreading and opinion dynamics on multiplex networks. An agent in the epidemic layer could remain in one of five distinct states, resulting in the SIRQD model. The agent’s attitude towards respecting the restrictions of the pandemic plays a crucial role in its prevalence. In our model, the agent’s point of view could be altered by either conformism mechanism, social pressure, or independent actions. As the underlying opinion model, we leverage the q-voter model. The entire system constitutes a coupled opinion–dynamic model where two distinct processes occur. The question arises of how to properly align these dynamics, i.e., whether they should possess equal or disparate timescales. This paper highlights the impact of different timescales of opinion dynamics on epidemic spreading, focusing on the time and the infection’s peak.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Shilun Zhang ◽  
Xunyi Zhao ◽  
Huijuan Wang

AbstractProgress has been made in how to suppress epidemic spreading on temporal networks via blocking all contacts of targeted nodes or node pairs. In this work, we develop contact blocking strategies that remove a fraction of contacts from a temporal (time evolving) human contact network to mitigate the spread of a Susceptible-Infected-Recovered epidemic. We define the probability that a contact c(i, j, t) is removed as a function of a given centrality metric of the corresponding link l(i, j) in the aggregated network and the time t of the contact. The aggregated network captures the number of contacts between each node pair. A set of 12 link centrality metrics have been proposed and each centrality metric leads to a unique contact removal strategy. These strategies together with a baseline strategy (random removal) are evaluated in empirical contact networks via the average prevalence, the peak prevalence and the time to reach the peak prevalence. We find that the epidemic spreading can be mitigated the best when contacts between node pairs that have fewer contacts and early contacts are more likely to be removed. A strategy tends to perform better when the average number contacts removed from each node pair varies less. The aggregated pruned network resulted from the best contact removal strategy tends to have a large largest eigenvalue, a large modularity and probably a small largest connected component size.


2022 ◽  
Author(s):  
Xuzhen Zhu ◽  
Yuxin Liu ◽  
Xiaochen Wang ◽  
Yuexia Zhang ◽  
Shengzhi Liu ◽  
...  

Abstract In the pandemic of COVID-19, there are exposed individuals who are infected but lack distinct clinical symptoms. In addition, the diffusion of related information drives aware individuals to spontaneously seek resources for protection. The special spreading characteristic and coevolution of different processes may induce unexpected spreading phenomena. Thus we construct a three-layered network framework to explore how information-driven resource allocation affects SEIS (Susceptible-Exposed-Infected-Susceptible) epidemic spreading. The analyses utilizing microscopic Markov chain approach reveal that the epidemic threshold depends on the topology structure of epidemic network, and the processes of information diffusion and resource allocation. Conducting extensive Monte Carlo simulations, we find some crucial phenomena in the coevolution of information diffusion, resource allocation and epidemic spreading. Firstly, when E-state (exposed state, without symptoms) individuals are infectious, long incubation period results in more E-state individuals than I-state (infected state, with obvious symptoms) individuals. Besides, when E-state individuals have strong or weak infectious capacity, increasing incubation period have an opposite effect on epidemic propagation. Secondly, the short incubation period induces the first-order phase transition. But enhancing the efficacy of resources would convert the phase transition to a second-order type. Finally, comparing the coevolution in networks with different topologies, we find setting the epidemic layer as scale-free network can inhibit the spreading of the epidemic.


2022 ◽  
Author(s):  
Haidong Xu ◽  
Ye Zhao ◽  
Dun Han

Abstract In this paper, we propose a coupled awareness - epidemic spreading model considering the heterogeneity of individual influences, which aims to explore the interaction between awareness diffusion and epidemic transmission. The considered heterogeneity of individual influences are threefold: the heterogeneity of individual influences in the information layer, the heterogeneity of individual influences in the epidemic layer and the heterogeneity of individual behavioral responses to epidemics. In addition, the individuals' receptive preference for information and the impacts of individuals' perceived local awareness ratio and individuals' perceived epidemic severity on self-protective behavior are included. The epidemic threshold is theoretically established according to the microscopic Markov chain approach and mean-field approach. Results indicate that the critical local and global awareness ratios have two-stage effects on the epidemic threshold. Besides, either the heterogeneity of individual influences in the information layer or the strength of individuals' responses to epidemics can influence the epidemic threshold with a nonlinear way. However, the heterogeneity of individual influences in the epidemic layer has few effect on the epidemic threshold, but can affects the magnitude of the final infected density.


Author(s):  
Ning-Ning Wang ◽  
Ya-Jing Wang ◽  
Shui-Han Qiu ◽  
Zeng-Ru Di
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document