Stable genetic transformation of Larix gmelinii L. by particle bombardment of zygotic embryos

2005 ◽  
Vol 24 (7) ◽  
pp. 418-425 ◽  
Author(s):  
Xiaofei Lin ◽  
Wenbo Zhang ◽  
Katsuaki Takechi ◽  
Susumu Takio ◽  
Kanji Ono ◽  
...  
PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258654
Author(s):  
Sufang Zhang ◽  
Shanshan Yan ◽  
Peiqi An ◽  
Qing Cao ◽  
Chen Wang ◽  
...  

To date, there are few reports of the successful genetic transformation of larch and other conifers, mainly because it is difficult to transform and integrate exogenous genes. In this study, hybrid larch Larix kaempferi 3x Larix gmelinii 9 cones were collected on June 27, July 1, July 4, July 7 and July 16, 2017. Embryogenic callus induction was studied using a combination of different plant growth regulators and concentrations. The results showed that July 1 was the best stage; the highest induction rate was 10.83%, which cultured in BM medium (Button medium, which formula was listed in S1 Table) with 1.0 mg/L 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.2 mg/L KT(kinetin). When cultured on a proliferation medium for 12 days, proliferation was the fastest, reaching 323.08%, which could also maintain the freshness and vitality. The suitable pre-culture medium for somatic embryogenesis was 1/4 BM medium containing 10 g/L inositol and 60 g/L sucrose. The combination of 45 mg/L ABA (abscisic acid) and 75 g/L PEG4000 (Polyethyene glycol 4000) could promote the number of somatic embryos, and reached the maximum, 210 140 per 1 g FW. The genetic transformation was carried out by the Agrobacterium-mediated transformation method with embryogenic callus cultured for 12 days. The results showed the optimal OD600 of the infection solution(suspension of A. tumefaciens) was 0.5, co-culture time was 2 days, and screening concentration of Hyg (hygromycin B) was 4 mg/L. In this study, the transformation rate of resistance callus was 32.1%. It provides a reference for low genetic transformation efficiency of larch at present. This study could be beneficial for the innovation and breeding of larch by genetic engineering and provides a certain basis for rapid propagation of excellent larch germplasm resources and genetic engineering breeding of larch and other conifers.


2008 ◽  
Vol 43 (3) ◽  
pp. 371-378 ◽  
Author(s):  
Caroline Pereira Petrillo ◽  
Newton Portilho Carneiro ◽  
Antônio Álvaro Corsetti Purcino ◽  
Carlos Henrique Siqueira Carvalho ◽  
José Donizeti Alves ◽  
...  

The objective of this work was to develop a genetic transformation system for tropical maize genotypes via particle bombardment of immature zygotic embryos. Particle bombardment was carried out using a genetic construct with bar and uidA genes under control of CaMV35S promoter. The best conditions to transform maize tropical inbred lines L3 and L1345 were obtained when immature embryos were cultivated, prior to the bombardment, in higher osmolarity during 4 hours and bombarded at an acceleration helium gas pressure of 1,100 psi, two shots per plate, and a microcarrier flying distance of 6.6 cm. Transformation frequencies obtained using these conditions ranged from 0.9 to 2.31%. Integration of foreign genes into the genome of maize plants was confirmed by Southern blot analysis as well as bar and uidA gene expressions. The maize genetic transformation protocol developed in this work will possibly improve the efficiency to produce new transgenic tropical maize lines expressing desirable agronomic characteristics.


Author(s):  
Masoumeh Nomani ◽  
Masoud Tohidfar

Abstract Background Trachyspermum ammi is one of the key medicinal plant species with many beneficial properties. Thymol is the most important substance in the essential oil of this plant. Thymol is a natural monoterpene phenol with high anti-microbial, anti-bacterial, and anti-oxidant properties. Thymol in the latest research has a significant impact on slowing the progression of cancer cells in human. In this research, embryos were employed as convenient explants for the fast and effectual regeneration and transformation of T. ammi. To regenerate this plant, Murashige and Skoog (MS) and Gamborg's B5 (B5) media were supplemented with diverse concentrations of plant growth regulators, such as 6-benzyladenine (BA), 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and kinetin (kin). Transgenic Trachyspermum ammi plants were also obtained using Agrobacterium-mediated transformation and zygotic embryos explants. Moreover, two Agrobacterium tumefaciens strains (EHA101 and LBA4404) harboring pBI121-TPS2 were utilized for genetic transformation to Trachyspermum ammi. Results According to the obtained results, the highest plant-regeneration frequency was obtained with B5 medium supplemented with 0.5 mg/l BA and 1 mg/l NAA. The integrated gene was also approved using the PCR reaction and the Southern blot method. Results also showed that the EHA101 strain outperformed another strain in inoculation time (30 s) and co-cultivation period (1 day) (transformation efficiency 19.29%). Furthermore, HPLC method demonstrated that the transformed plants contained a higher thymol level than non-transformed plants. Conclusions In this research, a fast protocol was introduced for the regeneration and transformation of Trachyspermum ammi, using zygotic embryo explants in 25–35 days. Our findings confirmed the increase in the thymol in the aerial part of Trachyspermum ammi. We further presented an efficacious technique for enhancing thymol content in Trachyspermum ammi using Agrobacterium-mediated plant transformation system that can be beneficial in genetic transformation and other plant biotechnology techniques.


Author(s):  
Guoquan Liu ◽  
Bradley C. Campbell ◽  
Ian D. Godwin

2002 ◽  
Vol 20 (10) ◽  
pp. 936-942 ◽  
Author(s):  
M. Ghosh ◽  
T. Saha ◽  
P. Nayak ◽  
S. Sen

1997 ◽  
Vol 16 (5) ◽  
pp. 255-260 ◽  
Author(s):  
Jose Luis Cabrera-Ponce ◽  
Liliana L�pez ◽  
Nacyra Assad-Garcia ◽  
Consuelo Medina-Arevalo ◽  
Ana Maria Bailey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document