Biogenesis of chloroplast outer envelope membrane proteins

2019 ◽  
Vol 38 (7) ◽  
pp. 783-792 ◽  
Author(s):  
Jonghak Kim ◽  
Yun Jeong Na ◽  
Soon Ju Park ◽  
So-Hyeon Baek ◽  
Dae Heon Kim
2021 ◽  
Author(s):  
Lucia E Gross ◽  
Anna Klinger ◽  
Nicole Spies ◽  
Theresa Ernst ◽  
Nadine Flinner ◽  
...  

Abstract The insertion of organellar membrane proteins with the correct topology requires the following: First, the proteins must contain topogenic signals for translocation across and insertion into the membrane. Second, proteinaceous complexes in the cytoplasm, membrane, and lumen of organelles are required to drive this process. Many complexes required for the intracellular distribution of membrane proteins have been described, but the signals and components required for the insertion of plastidic β-barrel-type proteins into the outer membrane are largely unknown. The discovery of common principles is difficult, as only a few plastidic β-barrel proteins exist. Here, we provide evidence that the plastidic outer envelope β-barrel proteins OEP21, OEP24, and OEP37 from pea (Pisum sativum) and Arabidopsis thaliana contain information defining the topology of the protein. The information required for translocation of pea proteins across the outer envelope membrane is present within the six N-terminal β-strands. This process requires the action of TOC (translocon of the outer chloroplast membrane). After translocation into the intermembrane space, β-barrel proteins interact with TOC75-V, as exemplified by OEP37 and P39, and are integrated into the membrane. The membrane insertion of plastidic β-barrel proteins is affected by mutation of the last β-strand, suggesting that this strand contributes to the insertion signal. These findings shed light on the elements and complexes involved in plastidic β-barrel protein import.


2000 ◽  
Vol 28 (4) ◽  
pp. 485-491 ◽  
Author(s):  
K. Chen ◽  
X. Chen ◽  
D. J. Schnell

The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toe apparatus) and inner (Tic apparatus) envelope membranes.


1992 ◽  
pp. 209-212
Author(s):  
Yukio Nagano ◽  
Kazumasa Sekiguchi ◽  
Nobuhiko Mural ◽  
Ryuichi Matsuno ◽  
Yukiko Sasaki

FEBS Letters ◽  
1999 ◽  
Vol 461 (1-2) ◽  
pp. 13-18 ◽  
Author(s):  
Anika Wiese ◽  
Ferdi Gröner ◽  
Uwe Sonnewald ◽  
Heike Deppner ◽  
Jens Lerchl ◽  
...  

2016 ◽  
Vol 113 (38) ◽  
pp. 10714-10719 ◽  
Author(s):  
Amélie A. Kelly ◽  
Barbara Kalisch ◽  
Georg Hölzl ◽  
Sandra Schulze ◽  
Juliane Thiele ◽  
...  

Galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)] are the hallmark lipids of photosynthetic membranes. The galactolipid synthases MGD1 and DGD1 catalyze consecutive galactosyltransfer reactions but localize to the inner and outer chloroplast envelopes, respectively, necessitating intermembrane lipid transfer. Here we show that the N-terminal sequence of DGD1 (NDGD1) is required for galactolipid transfer between the envelopes. Different diglycosyllipid synthases (DGD1, DGD2, and Chloroflexus glucosyltransferase) were introduced into the dgd1-1 mutant of Arabidopsis in fusion with N-terminal extensions (NDGD1 and NDGD2) targeting to the outer envelope. Reconstruction of DGDG synthesis in the outer envelope membrane was observed only with diglycosyllipid synthase fusion proteins carrying NDGD1, indicating that NDGD1 enables galactolipid translocation between envelopes. NDGD1 binds to phosphatidic acid (PA) in membranes and mediates PA-dependent membrane fusion in vitro. These findings provide a mechanism for the sorting and selective channeling of lipid precursors between the galactolipid pools of the two envelope membranes.


2014 ◽  
Vol 30 (5) ◽  
pp. 493-495
Author(s):  
Lynn G.L. Richardson ◽  
Yamuna D. Paila ◽  
Danny J. Schnell

Sign in / Sign up

Export Citation Format

Share Document