lipid transfer
Recently Published Documents


TOTAL DOCUMENTS

1657
(FIVE YEARS 362)

H-INDEX

97
(FIVE YEARS 10)

2022 ◽  
Vol 12 (4) ◽  
pp. 827-833
Author(s):  
Zhonge Chen ◽  
Yanhua Tang ◽  
Wenyong Jiang ◽  
Xiaoqian Zhou

Aim: To evaluate Stard 3’s effects and relative mechanisms in preadipocyto differentiation by vitro study. Materials and Methods: The 3T3-L1 cell were divided into 5 groups as NC, si-Stard 3, ROS agonist, ROS inhibitor and si-Stard 3+ROS agonist groups. The cell of different groups were evaluated by Oil red O staining and Triglyceride. Evaluating ROS production by DHE and NBT assay. Using RT-qPCR and WB methods to evaluate gene and protein expressions. Results: Compared with NC group, Triglyceride, DHE fluorescence intensity and NBT positive rate were significantly down-regulation in si-Stard 3 and ROS inhibitor groups (P < 0.001, respectively), and were significantly up-regulation in ROS agonist group (P < 0.001, respectively); However, with si-Stard 3 transfection and ROS agonist treatment, compared with si-Stard 3 group, Triglyceride, DHE fluorescence intensity and NBT positive rate were significantly increased in si-Stard 3+ROS agonist group (P < 0.001, respectively). With RT-qPCR and WB assay, Compared with NC group, Stard 3 gene and protein expressions of si-Stard 3 and si-Stard 3+ROS agonist group were significantly depressed (P < 0.001, respectively), AMPK, PPARγ, CEBPα and FABP4 gene expressions were significantly differences in si-Stard 3, ROS agonist and ROS inhibitor groups (P < 0.001, respectively) and p-AMPK, PPARγ, CEBPα and FABP4 protein expressions were significantly differences in si-Stard 3, ROS agonist and ROS inhibitor groups (P < 0.001, respectively), with si-Stard 3 transfection and ROS agonist the relative gene and protein expressions were significantly resumed compared with si-Stard 3 group (P < 0.001, respectively). Conclusion: Stard 3 knockdown had effects to suppress 3T3-L1 cells transformation into adipocytes in vitro study.


2022 ◽  
Vol 5 (1) ◽  
pp. 01-03
Author(s):  
Navarro L ◽  
Lazo C ◽  
Pineda P ◽  
Labrador-Horrillo M ◽  
Roger A ◽  
...  

The prevalence of cereal allergy is highly influenced by geographical area and consumption habits. According to data from Alergologica 2015 [1], cereal allergy accounts for 2.1% of all cases of food allergy in Spain. Beer is a barley-based alcoholic beverage that also contains hops, yeast, and other cereals (wheat, oats, corn, and even rye). Barley is also the basis of malt vinegar, whiskey, and gin. Several allergens of barley have been described, including lipid transfer protein (LTP), - and ß-amylase, gliadin, glutenin, peroxiredoxin, thionin, and trypsin inhibitor [2].


Author(s):  
Carlo Giovanni Quintanilla ◽  
Wan-Ru Lee ◽  
Jen Liou

Homeostatic regulation of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2) in receptor-stimulated cells is mediated by the lipid transfer protein Nir2. Nir2 is dynamically recruited to endoplasmic reticulum-plasma membrane (ER-PM) junctions to facilitate replenishment of PM PIP2 hydrolyzed during receptor-mediated signaling. However, our knowledge regarding the activation and sustainment of Nir2-mediated replenishment of PM PIP2 is limited. Here, we describe the functions of Nir1 as a positive regulator of Nir2 and PIP2 homeostasis. In contrast to the family proteins Nir2 and Nir3, Nir1 constitutively localizes at ER-PM junctions. Nir1 potentiates Nir2 targeting to ER-PM junctions during receptor-mediated signaling and is required for efficient PM PIP2 replenishment. Live-cell imaging and biochemical analysis reveal that Nir1 interacts with Nir2 via a region between the FFAT motif and the DDHD domain. Combined, results from this study identify Nir1 as an ER-PM junction localized protein that promotes Nir2 recruitment for PIP2 homeostasis.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu Liang ◽  
Yang Huang ◽  
Kang Chen ◽  
Xiangdong Kong ◽  
Maoteng Li

Abstract Background Brassica napus is an important agricultural species, improving stress resistance was one of the main breeding goals at present. Non-specific lipid transfer proteins (nsLTPs) are small, basic proteins which are involved in some biotic or abiotic stress responses. B. napus is susceptible to a variety of fungal diseases, so identify the BnLTPs and their expression in disease responses is very important. The common reference genome of B. napus does not contain all B. napus genes because of gene presence/absence variations between individuals. Therefore, it was necessary to search for candidate BnLTP genes in the B. napus pangenome. Results In the present study, the BnLTP genes were identified throughout the pangenome, and different BnLTP genes were presented among varieties. Totally, 246 BnLTP genes were identified and could be divided into five types (1, 2, C, D, and G). The classification, phylogenetic reconstruction, chromosome distribution, functional annotation, and gene expression were analyzed. We also identified potential cis-elements that respond to biotic and abiotic stresses in the 2 kb upstream regions of all BnLTP genes. RNA sequencing analysis showed that the BnLTP genes were involved in the response to Sclerotinia sclerotiorum infection. We identified 32 BnLTPs linked to blackleg resistance quantitative trait locus (QTL). Conclusion The identification and analysis of LTP genes in the B. napus pangenome could help to elucidate the function of BnLTP family members and provide new information for future molecular breeding in B. napus.


2021 ◽  
Vol 118 (52) ◽  
pp. e2112095118
Author(s):  
Matthew J. Moulton ◽  
Scott Barish ◽  
Isha Ralhan ◽  
Jinlan Chang ◽  
Lindsey D. Goodman ◽  
...  

A growing list of Alzheimer’s disease (AD) genetic risk factors is being identified, but the contribution of each variant to disease mechanism remains largely unknown. We have previously shown that elevated levels of reactive oxygen species (ROS) induces lipid synthesis in neurons leading to the sequestration of peroxidated lipids in glial lipid droplets (LD), delaying neurotoxicity. This neuron-to-glia lipid transport is APOD/E-dependent. To identify proteins that modulate these neuroprotective effects, we tested the role of AD risk genes in ROS-induced LD formation and demonstrate that several genes impact neuroprotective LD formation, including homologs of human ABCA1, ABCA7, VLDLR, VPS26, VPS35, AP2A, PICALM, and CD2AP. Our data also show that ROS enhances Aβ42 phenotypes in flies and mice. Finally, a peptide agonist of ABCA1 restores glial LD formation in a humanized APOE4 fly model, highlighting a potentially therapeutic avenue to prevent ROS-induced neurotoxicity. This study places many AD genetic risk factors in a ROS-induced neuron-to-glia lipid transfer pathway with a critical role in protecting against neurotoxicity.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Hanna Steigerwald ◽  
Frank Blanco-Perez ◽  
Melanie Albrecht ◽  
Caroline Bender ◽  
Andrea Wangorsch ◽  
...  

Pectin, a dietary fiber, is a polysaccharide that is widely used in food industry as a gelling agent. In addition, prebiotic and beneficial immunomodulatory effects of pectin have been demonstrated, leading to increased importance as food supplement. However, as cases of anaphylactic reactions after consumption of pectin-supplemented foods have been reported, the present study aims to evaluate the allergy risk of pectin. This is of particular importance since most of the pectin used in the food industry is extracted from citrus or apple pomace. Both contain several allergens such as non-specific lipid transfer proteins (nsLTPs), known to induce severe allergic reactions, which could impair the use of pectins in nsLTP allergic patients. Therefore, the present study for the first time was performed to analyze residual nsLTP content in two commercial pectins using different detection methods. Results showed the analytical sensitivity was diminished by the pectin structure. Finally, spiking of pectin with allergenic peach nsLTP Pru p 3 led to the conclusion that the potential residual allergen content in both pectins is below the threshold to induce anaphylactic reactions in nsLTP-allergic patients. This data suggests that consumption of the investigated commercial pectin products provides no risk for inducing severe reactions in nsLTP-allergic patients.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lisa David ◽  
Jianing Kang ◽  
Josh Nicklay ◽  
Craig Dufresne ◽  
Sixue Chen

After localized invasion by bacterial pathogens, systemic acquired resistance (SAR) is induced in uninfected plant tissues, resulting in enhanced defense against a broad range of pathogens. Although SAR requires mobilization of signaling molecules via the plant vasculature, the specific molecular mechanisms remain elusive. The lipid transfer protein defective in induced resistance 1 (DIR1) was identified in Arabidopsis thaliana by screening for mutants that were defective in SAR. Here, we demonstrate that stomatal response to pathogens is altered in systemic leaves by SAR, and this guard cell SAR defense requires DIR1. Using a multi-omics approach, we have determined potential SAR signaling mechanisms specific for guard cells in systemic leaves by profiling metabolite, lipid, and protein differences between guard cells in the wild type and dir1-1 mutant during SAR. We identified two long-chain 18 C and 22 C fatty acids and two 16 C wax esters as putative SAR-related molecules dependent on DIR1. Proteins and metabolites related to amino acid biosynthesis and response to stimulus were also changed in guard cells of dir1-1 compared to the wild type. Identification of guard cell-specific SAR-related molecules may lead to new avenues of genetic modification/molecular breeding for disease-resistant plants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Liu ◽  
Yimei Li ◽  
Quan Chen

Mitochondria are highly dynamic organelles and play essential role in ATP synthase, ROS production, innate immunity, and apoptosis. Mitochondria quality control is critical for maintaining the cellular function in response to cellular stress, growth, and differentiation Signals. Damaged or unwanted mitochondria are selectively removed by mitophagy, which is a crucial determinant of cell viability. Mitochondria-associated Endoplasmic Reticulum Membranes (MAMs) are the cellular structures that connect the ER and mitochondria and are involved in calcium signaling, lipid transfer, mitochondrial dynamic, and mitophagy. Abnormal mitochondrial quality induced by mitophagy impairment and MAMs dysfunction is associated with many diseases, including cardiovascular diseases (CVDs), metabolic syndrome, and neurodegenerative diseases. As a mitophagy receptor, FUNDC1 plays pivotal role in mitochondrial quality control through regulation of mitophagy and MAMs and is closely related to the occurrence of several types of CVDs. This review covers the regulation mechanism of FUNDC1-mediated mitophagy and MAMs formation, with a particular focus on its role in CVDs.


Sign in / Sign up

Export Citation Format

Share Document