scholarly journals Symbiont shuffling across environmental gradients aligns with changes in carbon uptake and translocation in the reef-building coral Pocillopora acuta

Coral Reefs ◽  
2021 ◽  
Vol 40 (2) ◽  
pp. 595-607
Author(s):  
Mickael Ros ◽  
David J. Suggett ◽  
John Edmondson ◽  
Trent Haydon ◽  
David J. Hughes ◽  
...  
2020 ◽  
Vol 638 ◽  
pp. 149-164
Author(s):  
GM Svendsen ◽  
M Ocampo Reinaldo ◽  
MA Romero ◽  
G Williams ◽  
A Magurran ◽  
...  

With the unprecedented rate of biodiversity change in the world today, understanding how diversity gradients are maintained at mesoscales is a key challenge. Drawing on information provided by 3 comprehensive fishery surveys (conducted in different years but in the same season and with the same sampling design), we used boosted regression tree (BRT) models in order to relate spatial patterns of α-diversity in a demersal fish assemblage to environmental variables in the San Matias Gulf (Patagonia, Argentina). We found that, over a 4 yr period, persistent diversity gradients of species richness and probability of an interspecific encounter (PIE) were shaped by 3 main environmental gradients: bottom depth, connectivity with the open ocean, and proximity to a thermal front. The 2 main patterns we observed were: a monotonic increase in PIE with proximity to fronts, which had a stronger effect at greater depths; and an increase in PIE when closer to the open ocean (a ‘bay effect’ pattern). The originality of this work resides on the identification of high-resolution gradients in local, demersal assemblages driven by static and dynamic environmental gradients in a mesoscale seascape. The maintenance of environmental gradients, specifically those associated with shared resources and connectivity with an open system, may be key to understanding community stability.


2005 ◽  
Vol 31 (1) ◽  
pp. 15-32 ◽  
Author(s):  
Fawzy M. Salama ◽  
Monier Abd El-Ghani ◽  
Salah El Naggar ◽  
Khadija A. Baayo

Diversity ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 57 ◽  
Author(s):  
Sean N. Porter ◽  
Michael H. Schleyer

Coral communities display spatial patterns. These patterns can manifest along a coastline as well as across the continental shelf due to ecological interactions and environmental gradients. Several abiotic surrogates for environmental variables are hypothesised to structure high-latitude coral communities in South Africa along and across its narrow shelf and were investigated using a correlative approach that considered spatial autocorrelation. Surveys of sessile communities were conducted on 17 reefs and related to depth, distance to high tide, distance to the continental shelf edge and to submarine canyons. All four environmental variables were found to correlate significantly with community composition, even after the effects of space were removed. The environmental variables accounted for 13% of the variation in communities; 77% of this variation was spatially structured. Spatially structured environmental variation unrelated to the environmental variables accounted for 39% of the community variation. The Northern Reef Complex appears to be less affected by oceanic factors and may undergo less temperature variability than the Central and Southern Complexes; the first is mentioned because it had the lowest canyon effect and was furthest from the continental shelf, whilst the latter complexes had the highest canyon effects and were closest to the shelf edge. These characteristics may be responsible for the spatial differences in the coral communities.


2021 ◽  
Vol 58 ◽  
pp. 102399
Author(s):  
Jason Hupp ◽  
Johnathan I.E. McCoy ◽  
Allen J. Millgan ◽  
Graham Peers

Sign in / Sign up

Export Citation Format

Share Document