environmental variation
Recently Published Documents


TOTAL DOCUMENTS

854
(FIVE YEARS 165)

H-INDEX

68
(FIVE YEARS 6)

Oecologia ◽  
2021 ◽  
Author(s):  
Stephanie Reher ◽  
Hajatiana Rabarison ◽  
B. Karina Montero ◽  
James M. Turner ◽  
Kathrin H. Dausmann

AbstractMany species are widely distributed and individual populations can experience vastly different environmental conditions over seasonal and geographic scales. With such a broad ecological reality, datasets with limited spatial and temporal resolution may not accurately represent a species and could lead to poorly informed management decisions. Because physiological flexibility can help species tolerate environmental variation, we studied the physiological responses of two separate populations of Macronycteris commersoni, a bat widespread across Madagascar, in contrasting seasons. The populations roost under the following dissimilar conditions: either a hot, well-buffered cave or within open foliage, unprotected from the local weather. We found that flexible torpor patterns, used in response to prevailing ambient temperature and relative humidity, were central to keeping energy budgets balanced in both populations. While bats’ metabolic rate during torpor and rest did not differ between roosts, adjusting torpor frequency, duration and timing helped bats maintain body condition. Interestingly, the exposed forest roost induced extensive use of torpor, which exceeded the torpor frequency of overwintering bats that stayed in the cave for months and consequently minimised daytime resting energy expenditure in the forest. Our current understanding of intraspecific physiological variation is limited and physiological traits are often considered to be fixed. The results of our study therefore highlight the need for examining species at broad environmental scales to avoid underestimating a species’ full capacity for withstanding environmental variation, especially in the face of ongoing, disruptive human interference in natural habitats.


2021 ◽  
Author(s):  
◽  
Christopher McDowall

<p>Demographic heterogeneity can have big effects on population dynamics, but for most species we have limited understanding of how and why individuals vary. Variation among individuals is of particular importance for stage-structured populations, and/or where species have ‘complex life-cycles’. This is especially relevant in the case of amphidromous fishes that typically spawn in river mouths and estuaries, develop at sea and return to freshwater to finish development. These fish face strong selection pressures as they negotiate challenges around dispersal and development in order to reproduce successfully. Quantifying variation amongst individual fish can improve understanding of their population dynamics and suggest possible drivers of variation.  I evaluate patterns and sources of variation in demographic attributes of the New Zealand smelt (Retropinna retropinna). R. retropinna is an amphidromous fish that is endemic to New Zealand. While most populations have a sea-going larval stage, a number of landlocked freshwater populations occur, with the largest landlocked population residing in Lake Taupo. Here R. retropinna are presented with a variety of littoral feeding/spawning habitats and environmental conditions that may vary across distinct regions of the lake. In addition, the protracted spawning period for this species in Lake Taupo (occurring over eight months of the year) provides additional scope for seasonal variation to influence demographic attributes of individuals.  I sampled R. retropinna from discrete coastal habitats (beach or river) that were located in the eastern, southern and western regions of the lake. I evaluated patterns of variation in the size-structure, age-structure and morphology of R. retropinna among habitats and/or regions across Lake Taupo. I used otoliths to reconstruct demographic histories (ages, growth rates, hatch dates) of individuals, and used a set of statistical models to infer spatial variation in demographic histories. I found differences in size and age structure between regions, and a temporal effect of hatch date on larval/juvenile growth rates.  In addition, I obtained samples of R. retropinna from a sea-going population at the Hutt river mouth (sampled fish were presumed to be migrating upstream after their development period in Wellington Harbour and/or adjacent coastal environments). While Lake Taupo is large, deep, fresh, oligotrophic and strongly stratified for 8-9 months outside of winter, Wellington Harbour is less than a sixth of the area, shallow, saline, eutrophic and never stratified. These greatly differing environmental conditions led me to expect that these systems’ R. retropinna populations would carry significantly different demographic attributes. I compared the hatching phenology, recruitment age, body morphology, and individual growth histories (reconstructed from otoliths) of R. retropinna sampled from Lake Taupo and Wellington Harbour. I explored the relationships between demographic variation and environmental variation (water temperature, chlorophyll a) for the two systems and found that this additional environmental information could account for much of the seasonal variation in daily otolith increment widths of R. retropinna. My results also suggest that while the two sampled populations likely share similar hatching and spawning phenologies, individuals from Lake Taupo tend to grow more slowly, particularly during winter, and end up smaller than sea-going fish sampled near Wellington. I speculate that these differences reflect variation in food supply (zooplankton may be limited in Lake Taupo over winter).  Overall, my results demonstrate a high degree of variation in morphological and life-history traits within a single species, potentially driven by an interaction between environmental variation and timing of development. My work contributes to a growing body of literature on demographic heterogeneity, and may help to inform the management of landlocked populations of R. retropinna in Lake Taupo.</p>


2021 ◽  
Author(s):  
◽  
Christopher McDowall

<p>Demographic heterogeneity can have big effects on population dynamics, but for most species we have limited understanding of how and why individuals vary. Variation among individuals is of particular importance for stage-structured populations, and/or where species have ‘complex life-cycles’. This is especially relevant in the case of amphidromous fishes that typically spawn in river mouths and estuaries, develop at sea and return to freshwater to finish development. These fish face strong selection pressures as they negotiate challenges around dispersal and development in order to reproduce successfully. Quantifying variation amongst individual fish can improve understanding of their population dynamics and suggest possible drivers of variation.  I evaluate patterns and sources of variation in demographic attributes of the New Zealand smelt (Retropinna retropinna). R. retropinna is an amphidromous fish that is endemic to New Zealand. While most populations have a sea-going larval stage, a number of landlocked freshwater populations occur, with the largest landlocked population residing in Lake Taupo. Here R. retropinna are presented with a variety of littoral feeding/spawning habitats and environmental conditions that may vary across distinct regions of the lake. In addition, the protracted spawning period for this species in Lake Taupo (occurring over eight months of the year) provides additional scope for seasonal variation to influence demographic attributes of individuals.  I sampled R. retropinna from discrete coastal habitats (beach or river) that were located in the eastern, southern and western regions of the lake. I evaluated patterns of variation in the size-structure, age-structure and morphology of R. retropinna among habitats and/or regions across Lake Taupo. I used otoliths to reconstruct demographic histories (ages, growth rates, hatch dates) of individuals, and used a set of statistical models to infer spatial variation in demographic histories. I found differences in size and age structure between regions, and a temporal effect of hatch date on larval/juvenile growth rates.  In addition, I obtained samples of R. retropinna from a sea-going population at the Hutt river mouth (sampled fish were presumed to be migrating upstream after their development period in Wellington Harbour and/or adjacent coastal environments). While Lake Taupo is large, deep, fresh, oligotrophic and strongly stratified for 8-9 months outside of winter, Wellington Harbour is less than a sixth of the area, shallow, saline, eutrophic and never stratified. These greatly differing environmental conditions led me to expect that these systems’ R. retropinna populations would carry significantly different demographic attributes. I compared the hatching phenology, recruitment age, body morphology, and individual growth histories (reconstructed from otoliths) of R. retropinna sampled from Lake Taupo and Wellington Harbour. I explored the relationships between demographic variation and environmental variation (water temperature, chlorophyll a) for the two systems and found that this additional environmental information could account for much of the seasonal variation in daily otolith increment widths of R. retropinna. My results also suggest that while the two sampled populations likely share similar hatching and spawning phenologies, individuals from Lake Taupo tend to grow more slowly, particularly during winter, and end up smaller than sea-going fish sampled near Wellington. I speculate that these differences reflect variation in food supply (zooplankton may be limited in Lake Taupo over winter).  Overall, my results demonstrate a high degree of variation in morphological and life-history traits within a single species, potentially driven by an interaction between environmental variation and timing of development. My work contributes to a growing body of literature on demographic heterogeneity, and may help to inform the management of landlocked populations of R. retropinna in Lake Taupo.</p>


2021 ◽  
Author(s):  
◽  
César A. Cárdenas

<p>Changes in the distributions of organisms not only alter community composition and food web structure, but also can initiate important changes at the ecosystem level. Understanding the interactions between biotic and abiotic factors affecting species’ distribution patterns in temperate habitats is important for predicting responses to future environmental change. Sponges are important members of temperate rocky reefs assemblages that are influenced by a number of abiotic factors including water movement, light regime, inclination and stability of the substratum, as well as complex ecological interactions.  The aim of this thesis was to investigate the interactions between sponges and macroalgae on shallow-water rocky reefs of Wellington, New Zealand, assessing if the distribution patterns of sponges are independent of algal populations. I used a combination of surveys, and manipulative field and laboratory experiments to explore the existence of interactions (positive or negative) between sponges and macroalgae and also to explore the effect of environmental factors on the distribution and abundance of temperate sponges. My first objective was to determine if the spatial distribution patterns of sponges are independent of macroalgae distribution and abundance at different sites on the Wellington south coast (Chapter 2). The results showed that abundance of most sponge species were strongly correlated with inclination, which supports previous studies in the northern hemisphere suggesting that sponge abundance and algal abundance are negatively correlated. In contrast, only a few sponge species were positively correlated with algal abundance. I then explored the positive interactions occurring between some sponges species and the presence of canopy-forming algae (Chapter 3). Results from this chapter suggest the canopy of Ecklonia radiata facilitates the existence of some sponge species such as Crella incrustans on vertical rocky walls. The removal of Ecklonia canopy led to a community dominated by turf algae, which corresponded with a decrease in sponge abundance and richness. My results suggest that the Ecklonia canopy facilitates the presence of some sponge species and allows their coexistence with turf algae underneath the canopy and also by altering immediate physical factors that may be detrimental for some sponge species. To further explore the existence of sponges and understory algae, I used an experimental approach (Chapter 4) to investigate the effect of the brown alga Zonaria turneriana on Leucetta sp. and also mechanisms involved in the interactions. However results from this chapter provided no evidence to support previous hypotheses that understory algae negatively affect sponges. In the last data chapter (Chapter 5), I studied sponges inhabiting different habitats in order to test if environmental variation affects the abundance and diversity of microorganisms, hence having the potential to affect the distribution and abundance of these species The stability observed in bacterial communities among specimens occupying different habitats suggests that environmental variation occurring in those habitats does not affect the stability of the community, and hence most likely does not radically alter the metabolism of these sponges. Although environmental factors such as light and sediment may have an effect on early sponge stages, other environmental (e.g. nutrients, temperature, wave action) and biotic factors, are more likely to influence the growth, survival and distribution of sponges on temperate rocky reefs.  In summary, temperate sponge assemblages are strongly influenced by interactions between a number of abiotic and biotic factors. The outcomes of the ecological interactions are controlled by environment (e.g. influence of inclination on competition between sponges and understory algae) and at the same time, biological interactions (e.g. facilitation) can moderate the influence of abiotic factors such as light, sedimentation and wave action, thus facilitating the coexistence between sponge and macroalgae underneath the Ecklonia canopy. My thesis makes a significant contribution to our knowledge of temperate subtidal ecology, in terms of the effects of biotic and abiotic factors on sponge assemblages and also improves our knowledge of temperate patterns of sponge and macroalgal interactions. Finally, my thesis highlights the importance of small-scale environmental variation in influencing the structure and diversity of sponge assemblages and also increase our understanding of temperate rocky reefs sponges, especially on the less studied sponge assemblages occurring in Ecklonia stands on vertical rocky walls.</p>


2021 ◽  
Author(s):  
◽  
César A. Cárdenas

<p>Changes in the distributions of organisms not only alter community composition and food web structure, but also can initiate important changes at the ecosystem level. Understanding the interactions between biotic and abiotic factors affecting species’ distribution patterns in temperate habitats is important for predicting responses to future environmental change. Sponges are important members of temperate rocky reefs assemblages that are influenced by a number of abiotic factors including water movement, light regime, inclination and stability of the substratum, as well as complex ecological interactions.  The aim of this thesis was to investigate the interactions between sponges and macroalgae on shallow-water rocky reefs of Wellington, New Zealand, assessing if the distribution patterns of sponges are independent of algal populations. I used a combination of surveys, and manipulative field and laboratory experiments to explore the existence of interactions (positive or negative) between sponges and macroalgae and also to explore the effect of environmental factors on the distribution and abundance of temperate sponges. My first objective was to determine if the spatial distribution patterns of sponges are independent of macroalgae distribution and abundance at different sites on the Wellington south coast (Chapter 2). The results showed that abundance of most sponge species were strongly correlated with inclination, which supports previous studies in the northern hemisphere suggesting that sponge abundance and algal abundance are negatively correlated. In contrast, only a few sponge species were positively correlated with algal abundance. I then explored the positive interactions occurring between some sponges species and the presence of canopy-forming algae (Chapter 3). Results from this chapter suggest the canopy of Ecklonia radiata facilitates the existence of some sponge species such as Crella incrustans on vertical rocky walls. The removal of Ecklonia canopy led to a community dominated by turf algae, which corresponded with a decrease in sponge abundance and richness. My results suggest that the Ecklonia canopy facilitates the presence of some sponge species and allows their coexistence with turf algae underneath the canopy and also by altering immediate physical factors that may be detrimental for some sponge species. To further explore the existence of sponges and understory algae, I used an experimental approach (Chapter 4) to investigate the effect of the brown alga Zonaria turneriana on Leucetta sp. and also mechanisms involved in the interactions. However results from this chapter provided no evidence to support previous hypotheses that understory algae negatively affect sponges. In the last data chapter (Chapter 5), I studied sponges inhabiting different habitats in order to test if environmental variation affects the abundance and diversity of microorganisms, hence having the potential to affect the distribution and abundance of these species The stability observed in bacterial communities among specimens occupying different habitats suggests that environmental variation occurring in those habitats does not affect the stability of the community, and hence most likely does not radically alter the metabolism of these sponges. Although environmental factors such as light and sediment may have an effect on early sponge stages, other environmental (e.g. nutrients, temperature, wave action) and biotic factors, are more likely to influence the growth, survival and distribution of sponges on temperate rocky reefs.  In summary, temperate sponge assemblages are strongly influenced by interactions between a number of abiotic and biotic factors. The outcomes of the ecological interactions are controlled by environment (e.g. influence of inclination on competition between sponges and understory algae) and at the same time, biological interactions (e.g. facilitation) can moderate the influence of abiotic factors such as light, sedimentation and wave action, thus facilitating the coexistence between sponge and macroalgae underneath the Ecklonia canopy. My thesis makes a significant contribution to our knowledge of temperate subtidal ecology, in terms of the effects of biotic and abiotic factors on sponge assemblages and also improves our knowledge of temperate patterns of sponge and macroalgal interactions. Finally, my thesis highlights the importance of small-scale environmental variation in influencing the structure and diversity of sponge assemblages and also increase our understanding of temperate rocky reefs sponges, especially on the less studied sponge assemblages occurring in Ecklonia stands on vertical rocky walls.</p>


Sign in / Sign up

Export Citation Format

Share Document