three gorges reservoir
Recently Published Documents


TOTAL DOCUMENTS

1784
(FIVE YEARS 552)

H-INDEX

47
(FIVE YEARS 14)

2022 ◽  
Author(s):  
Lei Zhang ◽  
Bingyuan Tan ◽  
Pengfei Hu ◽  
Xiaoxu Niu ◽  
Xing Zhang ◽  
...  

CATENA ◽  
2022 ◽  
Vol 208 ◽  
pp. 105715
Author(s):  
Shangwu Liu ◽  
Danxun Li ◽  
Dechun Liu ◽  
Xiaofeng Zhang ◽  
Zhili Wang

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Peiyin Yuan ◽  
Yu Zhao

The geological conditions of the Three Gorges Reservoir Region are complex and changing, and large- and medium-sized landslides are widely distributed. When a high-speed moving landslide enters the water, the water is significantly disturbed, and a landslide-generated wave will be formed, which will spread along the upstream and downstream of the river, causing significant threats and destruction to the hydraulic structures and the navigation of ships. Based on the typical rock landslide parameters and fracture development, we establish a three-dimensional physics experimental model of the bending section of the landslide-generated wave in the Three Gorges Reservoir Region. This paper primarily studies the variation law of the first wave height of landslide-generated waves with the width, height, and water entry velocity of the landslide body and then provides an empirical formula for the first wave height of landslide-generated waves in the curved section of the Three Gorges Reservoir Region. The ship rolling motion equation in the landslide-generated water area is analysed and established systematically. Additionally, the ship manoeuvring motion model in the landslide-generated water area is built. This paper explains the variation characteristics of ship turning tracks at different sailing speeds and sailing positions and proposes a basis to determine the navigation safety of ships in this area, thus providing new theoretical and technical support for the risk assessment of navigation of ships in the reservoir area.


2021 ◽  
Author(s):  
Zhiqiang Fan ◽  
Yanhao Zheng

Abstract In the Three Gorges Reservoir (TGR) area, the accumulation landslide characterized by stepped slip surfaces is widely developed, and its stability is significantly affected by the fluctuation of reservoir water level. In this paper, the Shuping landslide, a typical accumulation landslide in the TGR area, was selected to study the effect of water level fluctuations on landslide stability. Based on Multi-Circular (M-C) model, it is found that the decline of reservoir water level was the dominant factor causing the decrease of landslide stability. At the end of the decline of reservoir water level, the landslide stability was minimum and the corresponding moment was the most dangerous. The effect of the drawdown speed of reservoir water level on the minimum value of landslide stability had a threshold effect, although the minimum stability coefficient of landslide decreased with the increase of drawdown speed. Under the most dangerous water level conditions, the stability of the piled landslide increased linearly with the increase of the net thrust of piles. Also, by comparing with other classical models, the effectiveness of the M-C model in evaluating landslide stability under the dynamic changes of reservoir water level was verified. The results could provide a reliable scientific basis for improving the stability analysis and reinforcement measures of the accumulation landslide with the multi-circular slip surfaces in the TGR area, as well as can be applied to similar landslides in reservoir areas.


Sign in / Sign up

Export Citation Format

Share Document