Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian f ceo phase excursions

2006 ◽  
Vol 86 (2) ◽  
pp. 219-227 ◽  
Author(s):  
J.J. McFerran ◽  
W.C. Swann ◽  
B.R. Washburn ◽  
N.R. Newbury
Author(s):  
Kutan Gürel ◽  
Valentin J. Wittwer ◽  
Sargis Hakobyan ◽  
Nayara Jornod ◽  
Stéphane Schilt ◽  
...  

Author(s):  
A. Ruehl ◽  
M. E. Fermann ◽  
I. Hartl ◽  
A. Cingöz ◽  
D. C. Yost ◽  
...  

2006 ◽  
Vol 31 (20) ◽  
pp. 3046 ◽  
Author(s):  
W. C. Swann ◽  
J. J. McFerran ◽  
I. Coddington ◽  
N. R. Newbury ◽  
I. Hartl ◽  
...  

Science ◽  
2021 ◽  
Vol 373 (6550) ◽  
pp. 99-103
Author(s):  
Chao Xiang ◽  
Junqiu Liu ◽  
Joel Guo ◽  
Lin Chang ◽  
Rui Ning Wang ◽  
...  

Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si3N4) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor–compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si3N4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms.


Author(s):  
N. R. Newbury ◽  
I. Coddington ◽  
T. Dennis ◽  
W. C. Swann ◽  
P. Williams

2007 ◽  
Vol 24 (8) ◽  
pp. 1756 ◽  
Author(s):  
Nathan R. Newbury ◽  
William C. Swann

Sign in / Sign up

Export Citation Format

Share Document