scholarly journals Experimental ex-vivo performance study comparing a novel, pulsed thulium solid-state laser, chopped thulium fibre laser, low and high-power holmium:YAG laser for endoscopic enucleation of the prostate

Author(s):  
Mehmet Yilmaz ◽  
Julia Esser ◽  
Lea Kraft ◽  
Ralf Petzold ◽  
August Sigle ◽  
...  

Abstract Purpose The aim of this study was to compare the enucleation performances of four different types of laser devices in an ex-vivo experiment: a novel, pulsed Tm:YAG solid-state laser evaluation model (p-Tm:YAG), chopped thulium fibre laser (TFL), low-power Ho:YAG laser (LP-Ho:YAG), and a high-power Ho:YAG laser (HP-Ho:YAG). Methods Our primary aim was to endoscopically separate the fascial layers of a porcine belly using laser fibres within a time period of 60 s. The size of a “tissue pocket” was assessed numerically. The enucleation characteristics reflecting the surgeon’s experience were evaluated via the NASA Task Load Index (TLX) questionnaire and a questionnaire based on Likert scale. Results HP-Ho:YAG achieved with the available laser settings the largest overall “tissue pocket” (31.5 cm2) followed by p-Tm:YAG (15 cm2), TFL (12 cm2), and LP-Ho:YAG (6 cm2). The coagulation performances of p-Tm:YAG and TFL were rated the best. In the performance evaluation by the Likert questionnaire, HP-Ho:YAG (average score of 4.06) was rated highest, followed by p-Tm:YAG (3.94), TFL (3.38), and LP-Ho:YAG (3.25). The evaluation of the NASA-TLX performance questionnaire revealed average scores for HP-Ho:YAG, LP-Ho:YAG, TFL and p-Tm:YAG of 4.38, 4.09, 3.92 and 3.90, respectively. Conclusion We are the first to compare different laser devices and settings in an ex-vivo study. We found that the surgeons were most satisfied with the HP-Ho:YAG laser device, followed by the p-Tm:YAG. These findings could be highly relevant for future research and for the practical utilisation of laser systems in endourology.

Author(s):  
Lea Kraft ◽  
Ralf Petzold ◽  
Rodrigo Suarez-Ibarrola ◽  
Arkadiusz Miernik

Abstract The aim of this work was to compare the fragmentation efficiency of a novel, pulsed Thulium solid-state laser (p-Tm:YAG) to that of a chopped Thulium fibre laser (TFL) and a pulsed Holmium solid-state laser (Ho:YAG). During the fragmentation process, we used a silicone mould to fixate the hemispherical stone models under water in a jar filled with room-temperature water. Each laser device registered the total energy applied to the stone model to determine fragmentation efficiency. Our study examined laser settings with single pulse energies ranging from 0.6 to 6 J and pulse frequencies ranging from 5 to 15 Hz. Similar laser settings were applied to explicitly compare the fragmentation efficiency of all three devices. We experimented with additional laser settings to see which of the three devices would perform best. The fragmentation performance of the three laser devices differed statistically significantly (p < 0.05). The average total energy required to fragment the stone model was 345.96 J for Ho:YAG, 372.43 J for p-Tm:YAG and 483.90 J for TFL. To fragment the stone models, both Ho:YAG and p-Tm:YAG needed similar total energy (p = 0.97). TFL’s fragmentation efficiency is significantly lower than that of Ho:YAG and p-Tm:YAG. Furthermore, we found the novel p-Tm:YAG’s fragmentation efficiency to closely resemble that of Ho:YAG. The fragmentation efficiency is thought to be influenced by the pulse duration. TFL’s shortest possible pulse duration was considerably longer than that of Ho:YAG and p-Tm:YAG, resulting in Ho:YAG and p-Tm:YAG exhibiting better fragmenting efficiency.


1996 ◽  
Vol 24 (Supplement) ◽  
pp. 85-88
Author(s):  
H. Kan ◽  
T. Kanzaki ◽  
H. Miyajima ◽  
Y. Ito ◽  
K. Matsui ◽  
...  

2009 ◽  
Vol 36 (7) ◽  
pp. 1686-1692 ◽  
Author(s):  
田长青 Tian Changqing ◽  
徐洪波 Xu Hongbo ◽  
曹宏章 Cao Hongzhang ◽  
司春强 Si Chunqiang

2011 ◽  
Vol 23 (6) ◽  
pp. 1439-1443
Author(s):  
陈林 Chen Lin ◽  
景峰 Jing Feng ◽  
邓青华 Deng Qinghua ◽  
段文涛 Duan Wentao ◽  
陈远斌 Chen Yuanbin ◽  
...  

2014 ◽  
Vol 51 (8) ◽  
pp. 081401
Author(s):  
田明 Tian Ming ◽  
王菲 Wang Fei ◽  
李玉瑶 Li Yuyao ◽  
焦正超 Jiao Zhengchao ◽  
罗宽 Luo Kuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document