scholarly journals Korovkin-Type Results on Convergence of Sequences of Positive Linear Maps on Function Spaces

2019 ◽  
Vol 52 (3) ◽  
pp. 423-432
Author(s):  
Maliheh Hosseini ◽  
Juan J. Font
1972 ◽  
Vol 24 (3) ◽  
pp. 520-529 ◽  
Author(s):  
Man-Duen Choi

The objective of this paper is to give some concrete distinctions between positive linear maps and completely positive linear maps on C*-algebras of operators.Herein, C*-algebras possess an identity and are written in German type . Capital letters A, B, C stand for operators, script letters for vector spaces, small letters x, y, z for vectors. Capital Greek letters Φ, Ψ stand for linear maps on C*-algebras, small Greek letters α, β, γ for complex numbers.We denote by the collection of all n × n complex matrices. () = ⊗ is the C*-algebra of n × n matrices over .


2019 ◽  
Vol 10 (4) ◽  
pp. 313-324
Author(s):  
Mohammad W. Alomari

AbstractIn this work, an operator version of Popoviciu’s inequality for positive operators on Hilbert spaces under positive linear maps for superquadratic functions is proved. Analogously, using the same technique, an operator version of Popoviciu’s inequality for convex functions is obtained. Some other related inequalities are also presented.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Agata Caserta ◽  
Giuseppe Di Maio ◽  
Ljubiša D. R. Kočinac

We study statistical versions of several classical kinds of convergence of sequences of functions between metric spaces (Dini, Arzelà, and Alexandroff) in different function spaces. Also, we discuss a statistical approach to recently introduced notions of strong uniform convergence and exhaustiveness.


2016 ◽  
Vol 503 ◽  
pp. 233-247 ◽  
Author(s):  
Yu Yang ◽  
Denny H. Leung ◽  
Wai-Shing Tang

2017 ◽  
Vol 66 (6) ◽  
pp. 1186-1198 ◽  
Author(s):  
Maryam Khosravi ◽  
Mohammad Sal Moslehian ◽  
Alemeh Sheikhhosseini

Sign in / Sign up

Export Citation Format

Share Document