Two-dimensional capillary formation model in tumor angiogenesis problem through spectral meshless radial point interpolation

2019 ◽  
Vol 36 (1) ◽  
pp. 127-138
Author(s):  
Elyas Shivanian ◽  
Ahmad Jafarabadi
2015 ◽  
Vol 18 (2) ◽  
pp. 106-113
Author(s):  
Nha Thanh Nguyen ◽  
Hien Thai Nguyen ◽  
Minh Ngoc Nguyen ◽  
Thien Tich Truong

The so-called T-stress, or second term of the William (1957) series expansion for linear elastic crack-tip fields, has found many uses in fracture mechanics applications. In this paper, an interaction integral method for calculating the T-stress for two-dimensional crack problems using the extended radial point interpolation method (XRPIM) is presented. Typical advantages of RPIM shape function are the satisfactions of the Kronecker’s delta property and the high-order continuity. The T-stress can be calculated directly from a path independent interaction integral entirely based on the J-integral by simply the auxiliary field. Several benchmark examples in 2D crack problem are performed and compared with other existing solutions to illustrate the correction of the presented approach.


Author(s):  
Wei Li ◽  
Qifan Zhang ◽  
Qiang Gui ◽  
Yingbin Chai

To improve the accuracy of the standard finite element (FE) solutions for acoustic radiation computation, this work presents the coupling of a radial point interpolation method (RPIM) with the standard FEM based on triangular (T3) mesh to give a coupled “FE-Meshfree” Trig3-RPIM element for two-dimensional acoustic radiation problems. In this coupled Trig3-RPIM element, the local approximation (LA) is represented by the polynomial-radial basis functions and the partition of unity (PU) concept is satisfied using the standard FEM shape functions. Incorporating the present coupled Trig3-RPIM element with the appropriate non-reflecting boundary condition, the two-dimensional acoustic radiation problems in exterior unbounded domain can be successfully solved. The numerical results demonstrate that the present coupled Trig3-RPIM have significant superiorities over the standard FEM and can be regarded as a competitive numerical techniques for exterior acoustic computation.


Sign in / Sign up

Export Citation Format

Share Document