scholarly journals A high-resolution 44-year atmospheric hindcast for the Mediterranean Basin: contribution to the regional improvement of global reanalysis

2005 ◽  
Vol 25 (2-3) ◽  
pp. 219-236 ◽  
Author(s):  
M. G. Sotillo ◽  
A. W. Ratsimandresy ◽  
J. C. Carretero ◽  
A. Bentamy ◽  
F. Valero ◽  
...  
2020 ◽  
Author(s):  
Katerina Spanoudaki ◽  
Nikolaos Kokkos ◽  
Konstantinos Zachopoulos ◽  
Georgios Sylaios ◽  
Nikolaos Kampanis ◽  
...  

<p>The H2020 funded project ODYSSEA (http://odysseaplatform.eu/) aims to make Mediterranean marine data easily accessible and operational to a broad range of users of the marine space. ODYSSEA develops an interoperable and cost-effective platform, fully integrating networks of observing and forecasting systems across the Mediterranean basin, addressing both the open sea and the coastal zone. The platform integrates marine data from existing Earth Observing Systems, such as Copernicus and EMODnet, receives and processes novel, newly produced datasets (through high-resolution models and on-line sensors such as a novel microplastics sensor) from nine prototype Observatories established across the Mediterranean basin, and applies advanced algorithms to organise, homogenise and fuse the large quantities of data in order to provide to various end-user groups and stakeholders both primary data and on-demand derived data services.</p><p>The nine ODYSSEA Observatories are established across the whole Mediterranean basin, covering also areas of marine data gaps along the North African and Middle East coastline. The Observatories comprise observing and forecasting systems and cover coastal and shelf zone environments, Marine Protected Areas and areas with increased human pressure. The operational forecasting system of the Observatories consists of a ‘chain’ of dynamically coupled, high-resolution numerical models comprised of a) the hydrodynamic model Delft3D-FLOW, b) the wave model Delft3D-WAVE (SWAN), c) the water quality model DELWAQ, d) the oil spill fate and transport model MEDSLIK-II, e) the ecosystem model ECOPATH, and f) the in-house mussel farm model developed by the Democritus University of Thrace. This operational system provides forecasts, early warnings and alerts for currents, waves, water quality parameters, oil spill pollution and ecosystem status. In this work, the ODYSSEA forecasting system (developed with the Delft-FEWS software) is implemented for simulating oil spill pollution for the Thracian Sea Observatory.  The area is biodiversity rich and an important spawning and nursery ground for small pelagic species, while in Kavala Gulf, oil exploitation takes place. The Lagrangian oil spill model MEDSLIK-II has been coupled to high-resolution oceanographic fields (currents, temperature, Stokes drift velocity), produced by Delft3D-FLOW and SWAN, and NOAA GFS atmospheric forcing. The hydrodynamic and wave models have been configured for the Thracian Sea based on dynamic downscaling of CMEMS products to a grid resolution of 1/120°. Seasonal hazard maps (surface oil slick, beached oil) are produced employing multiple oil spill scenarios using multi-year hydrodynamics. The results highlight the hazard faced by Thracian Sea Observatory coasts. </p><p><strong>Acknowledgements:</strong> This research has received funding from the European Union’s Horizon 2020 research and innovation programme ODYSSEA: OPERATING A NETWORK OF INTEGRATED OBSERVATORY SYSTEMS IN THE MEDITERRANEAN SEA, GA No 72727.</p>


2019 ◽  
Author(s):  
Tristan Vadsaria ◽  
Laurent Li ◽  
Gilles Ramstein ◽  
Jean-Claude Dutay

Abstract. Recently, major progress has been made in the simulation of the ocean dynamics of the Mediterranean using atmospheric and oceanic models with high spatial resolution. High resolution is essential to accurately capture the synoptic variability required to initiate intermediate and deep-water formation, the engine of the MTC (Mediterranean Thermohaline Circulation). In paleoclimate studies, one major problem with the simulation of regional climate changes is that boundary conditions are not available from observations or data reconstruction to drive high-resolution regional models. One consistent way to advance paleoclimate modelling is to use a comprehensive global to regional approach. However, this approach needs long-term integration to reach equilibrium (hundreds of years), implying enormous computational resources. To tackle this issue, a sequential architecture of a global-regional modelling platform has been developed and is described in detail in this paper. First of all, the platform is validated for the historical period. It is then used to investigate the climate and in particular, the oceanic circulation, during the Early Holocene. This period was characterised by a large reorganisation of the MTC that strongly affected oxygen supply to the intermediate and deep waters, which ultimately led to an anoxic crisis (called sapropel). Beyond the case study shown here, this platform may be applied to a large number of paleoclimate contexts from the Quaternary to the Pliocene, as long as regional tectonics remain mostly unchanged. For example, the climate responses of the Mediterranean basin during the last interglacial (LIG), the last glacial maximum (LGM) and the Late Pliocene, all present interesting scientific challenges which may be addressed using this numerical platform.


2020 ◽  
Vol 13 (5) ◽  
pp. 2337-2354
Author(s):  
Tristan Vadsaria ◽  
Laurent Li ◽  
Gilles Ramstein ◽  
Jean-Claude Dutay

Abstract. Recently, major progress has been made in the simulation of the ocean dynamics of the Mediterranean using atmospheric and oceanic models with high spatial resolution. High resolution is essential to accurately capture the synoptic variability required to initiate intermediate- and deep-water formation, the engine of the Mediterranean thermohaline circulation (MTC). In paleoclimate studies, one major problem with the simulation of regional climate changes is that boundary conditions are not available from observations or data reconstruction to drive high-resolution regional models. One consistent way to advance paleoclimate modelling is to use a comprehensive global-to-regional approach. However, this approach needs long-term integration to reach equilibrium (hundreds of years), implying enormous computational resources. To tackle this issue, a sequential architecture of a global–regional modelling platform has been developed for the first time and is described in detail in this paper. First of all, the platform is validated for the historical period. It is then used to investigate the climate and in particular, the oceanic circulation, during the Early Holocene. This period was characterised by a large reorganisation of the MTC that strongly affected oxygen supply to the intermediate and deep waters, which ultimately led to an anoxic crisis (called sapropel). Beyond the case study shown here, this platform may be applied to a large number of paleoclimate contexts from the Quaternary to the Pliocene, as long as regional tectonics remain mostly unchanged. For example, the climate responses of the Mediterranean basin during the last interglacial period (LIG), the Last Glacial Maximum (LGM) and the Late Pliocene all present interesting scientific challenges which may be addressed using this numerical platform.


2008 ◽  
Vol 55 (11) ◽  
pp. 827-842 ◽  
Author(s):  
A.W. Ratsimandresy ◽  
M.G. Sotillo ◽  
J.C. Carretero Albiach ◽  
E. Álvarez Fanjul ◽  
H. Hajji

Author(s):  
Joshua M. White

This book offers a comprehensive examination of the shape and impact of piracy in the eastern half of the Mediterranean and the Ottoman Empire’s administrative, legal, and diplomatic response. In the late sixteenth and seventeenth centuries, piracy had a tremendous effect on the formation of international law, the conduct of diplomacy, the articulation of Ottoman imperial and Islamic law, and their application in Ottoman courts. Piracy and Law draws on research in archives and libraries in Istanbul, Venice, Crete, London, and Paris to bring the Ottoman state and Ottoman victims into the story for the first time. It explains why piracy exploded after the 1570s and why the Ottoman state was largely unable to marshal an effective military solution even as it responded dynamically in the spheres of law and diplomacy. By focusing on the Ottoman victims, jurists, and officials who had to contend most with the consequences of piracy, Piracy and Law reveals a broader range of piratical practitioners than the Muslim and Catholic corsairs who have typically been the focus of study and considers their consequences for the Ottoman state and those who traveled through Ottoman waters. This book argues that what made the eastern half of the Mediterranean basin the Ottoman Mediterranean, more than sovereignty or naval supremacy—which was ephemeral—was that it was a legal space. The challenge of piracy helped to define its contours.


Sign in / Sign up

Export Citation Format

Share Document