interglacial period
Recently Published Documents


TOTAL DOCUMENTS

307
(FIVE YEARS 84)

H-INDEX

47
(FIVE YEARS 4)

2022 ◽  
pp. 1-20
Author(s):  
İsmail Baykara ◽  
M. Akif Sarıkaya ◽  
Serkan Şahin ◽  
Berkay Dinçer ◽  
Esin Ünal

The province of Van in north-eastern Turkey served as a land bridge between Africa and Eurasia during the Palaeolithic. The region is of particular relevance for understanding the movement of hominins between these continents. This study concerns the lithic remains from a locality at Gürgürbaba Hill, named Locality 010, north of the village of Ulupamir (Erciş district). Locality 010 was dated to 311±32 kya by terrestrial cosmogenic nuclides method, which coincides with Marine Isotope Stage 9 (MIS 9), a Middle Pleistocene interglacial period. The assemblage from this site is attributed to the Late Acheulean and resembles that of the southern Caucasus. This similarity indicates that the artefacts from Locality 010 were probably produced by late Lower Palaeolithic technology in a broad sense. These findings suggest local adaptations of late Middle Pleistocene hominins to high plateau environments.


2022 ◽  
Author(s):  
Maria Vittoria Guarino ◽  
Louise Sime ◽  
David Schroeder ◽  
Jeff Ridley

Abstract. The Heinrich 11 event is simulated using the HadGEM3 model during the Last Interglacial period. We apply 0.2 Sv of meltwater forcing across the North Atlantic during a 250 years long simulation. We find that the strength of the Atlantic Meridional Overturning Circulation is reduced by 60 % after 150 years of meltwater forcing, with an associated decrease of 0.2 to 0.4 PW in meridional ocean heat transport at all latitudes. The changes in ocean heat transport affect surface temperatures. The largest increase in the meridional surface temperature gradient occurs between 40–50 N. This increase is associated with a strengthening of 20 % in 850 hPa winds. The stream jet intensification in the Northern Hemisphere in return alters the temperature structure of the ocean heat through an increased gyre circulation, and associated heat transport (+0.1–0.2 PW), at the mid-latitudes, and a decreased gyre ocean heat transport (−0.2 PW) at high-latitudes. The changes in meridional temperature and pressure gradients cause the Intertropical Convergence Zone (ITCZ) to move southward, leading to stronger westerlies and a more positive Southern Annual Mode (SAM) in the Southern Hemisphere. The positive SAM influences sea ice formation leading to an increase in Antarctic sea ice. Our coupled-model simulation framework shows that the classical "thermal bipolar see-saw'' has previously undiscovered consequences in both Hemispheres: these include Northern Hemisphere gyre heat transport and wind changes; alongside an increase in Antarctic sea ice during the first 250 years of meltwater forcing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gaku Ueki ◽  
Sheng-Nan Zhang ◽  
Xue-Jiao Zhu ◽  
Xiu-Jun Wen ◽  
Koji Tojo ◽  
...  

To deepen understanding the evolutionary process of lucanid–yeast association, the lateral transmission process of yeast symbionts among stag beetle genera Platycerus and Prismognathus around the border between Japan and South Korea was estimated based on molecular analyses and species distribution modelings. Phylogenetic analyses were based on yeast ITS and IGS sequences and beetle COI sequences using Prismognathus dauricus from the Tsushima Islands and Pr. angularis from Kyushu, Japan, as well as other sequence data from our previous studies. The range overlap based on the species distribution model (SDM) and differentiation in ecological space were analyzed. Based on the IGS sequences, Clade II yeast symbionts were shared by Platycerus hongwonpyoi and Pr. dauricus in South Korea and the Tsushima Islands, and Platycerus viridicuprus in Japan. Clade III yeasts were shared by Pr. dauricus from the Tsushima Islands and Pr. angularis in Japan. During the Last Interglacial period when the land bridge between Japan and the Korean Peninsula existed, range overlap was predicted to occur between Pl. viridicuprus and Pr. dauricus in Kyushu and between Pr. dauricus and Pr. angularis in Kyushu and the Tsushima Islands. The ecological space of Pl. hongwonpyoi was differentiated from that of Pl. viridicuprus and Pr. angularis. We demonstrated the paleogeographical lateral transmission process of Scheffersomyces yeast symbionts among lucanid genera and species: putative transmission of yeasts from Pr. dauricus to Pl. viridicuprus in Kyushu and from Pr. angularis to Pr. dauricus in Kyushu or the Tsushima Islands. We also found that the yeast symbionts are likely being replaced in Pr. dauricus on the Tsushima Islands. We present novel estimates of the lateral transmission process of microbial symbionts based on phylogenetic, SDM and environmental analyses among lucanid beetles.


Author(s):  
I. D. Zolnikov ◽  
◽  
A. A. Anoykin ◽  
A. V. Postnov ◽  
A. V. Vybornov ◽  
...  

The Upper Neo-Pleistocene alluvial deposits lie in a close hypsometric position in outcrops of the Lower Ob Region right bank. Their top usually does not rise above the level of 5 m above the tow-path edge. At the same level, glacial erratic masses of the Middle Pleistocene alluvium were recorded in a number of areas. The height of the 1st and 2nd sites of terraces (on average from 5 to 10–15 m) depends on the thickness of subaerial deposits overlapping the alluvium. The 3rd terrace above flood-plain of the Bolshaya (Big) Ob has no geomorphological expression, since the alluvium of the first Late Neo-Pleistocene interglacial period without ablation is drape overlain by parallely bedded precipitates of the glacier-ice-blocked lake of the first Late Neo-Pleistocene glaciation. Thus, the height of sites of terraced surfaces does not directly correlate with the age of their alluvial basement. Therefore, the geomorphological method for differentiation of river sediments is not effective for this region. In addition, the problems of differentiation and correlation of alluvial deposits of the Lower Ob Region right bank are complicated by the presence of fluvioglacial incisions of deglaciation stages of the Middle Neo-Pleistocene and Upper Neo-Pleistocene glaciations.


2021 ◽  
Author(s):  
◽  
Kerry Walton

<p>Cominella maculosa and C. virgata are common rocky shore whelk species from New Zealand. This study used DNA sequences from the mitochondrial gene cytochrome c oxidase subunit 1 (CO1) to expand an earlier unpublished dataset and examine the phylogeographic structure of both species in the Cook Strait region, of C. maculosa in the Chatham Islands, and of C. virgata in the northern North Island. Both species are found to have a considerable degree of phylogeographic structure, concordant with that reported by an earlier study and for other species with direct development.  South Island sites sampled for C. maculosa had several private haplotypes and a high frequency haplotype that is shared with populations from the southern North Island. Together, these formed a ‘southern haplogroup’. Low diversity in ‘southern’ populations may reflect founder effects that would have occurred as part of a southward range expansion during the onset of the present interglacial period. The Chatham Islands samples had two haplotypes that formed a separate sub-group to the ‘southern haplogroup’, suggesting Chatham Islands populations are moderately isolated from those on mainland New Zealand but may have been founded from ‘southern’ populations relatively recently.  The high frequency haplotype present in South Island samples of C. virgata is absent in Wellington samples but widespread in those from the north-eastern North Island. South Island populations may have been founded from the Hauraki Gulf through human-mediated translocation events. Phylogenetic analyses with a focus on C. virgata were conducted using the mitochondrial genes CO1 and 16SrRNA, and the nuclear gene 18S rRNA, to expand an earlier published dataset. The purported northern subspecies C. virgata brookesi does not form a monophyletic lineage and voucher specimens fluidly intergrade with the nominal subspecies, with which it is synonymised. A lectotype is designated for Buccinum lineolatum Quoy & Gaimard, 1833, for which Cominella virgata is a replacement name. Potential causes of the disjunct distribution patterns of C. virgata and other mollusc taxa are discussed with particular reference to the formation and timing of marine straits through the Auckland Isthmus and Cook Strait.</p>


2021 ◽  
Author(s):  
◽  
Kerry Walton

<p>Cominella maculosa and C. virgata are common rocky shore whelk species from New Zealand. This study used DNA sequences from the mitochondrial gene cytochrome c oxidase subunit 1 (CO1) to expand an earlier unpublished dataset and examine the phylogeographic structure of both species in the Cook Strait region, of C. maculosa in the Chatham Islands, and of C. virgata in the northern North Island. Both species are found to have a considerable degree of phylogeographic structure, concordant with that reported by an earlier study and for other species with direct development.  South Island sites sampled for C. maculosa had several private haplotypes and a high frequency haplotype that is shared with populations from the southern North Island. Together, these formed a ‘southern haplogroup’. Low diversity in ‘southern’ populations may reflect founder effects that would have occurred as part of a southward range expansion during the onset of the present interglacial period. The Chatham Islands samples had two haplotypes that formed a separate sub-group to the ‘southern haplogroup’, suggesting Chatham Islands populations are moderately isolated from those on mainland New Zealand but may have been founded from ‘southern’ populations relatively recently.  The high frequency haplotype present in South Island samples of C. virgata is absent in Wellington samples but widespread in those from the north-eastern North Island. South Island populations may have been founded from the Hauraki Gulf through human-mediated translocation events. Phylogenetic analyses with a focus on C. virgata were conducted using the mitochondrial genes CO1 and 16SrRNA, and the nuclear gene 18S rRNA, to expand an earlier published dataset. The purported northern subspecies C. virgata brookesi does not form a monophyletic lineage and voucher specimens fluidly intergrade with the nominal subspecies, with which it is synonymised. A lectotype is designated for Buccinum lineolatum Quoy & Gaimard, 1833, for which Cominella virgata is a replacement name. Potential causes of the disjunct distribution patterns of C. virgata and other mollusc taxa are discussed with particular reference to the formation and timing of marine straits through the Auckland Isthmus and Cook Strait.</p>


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Laurie Menviel ◽  
Aline Govin ◽  
Arthur Avenas ◽  
Katrin J. Meissner ◽  
Katharine M. Grant ◽  
...  

AbstractDuring orbital precession minima, the Sahara was humid and more vegetated, providing potential corridors for Hominins migration. Uncertainties remain over the climatic processes controlling the initiation, demise and amplitude of these African Humid Periods. Here we study these processes using a series of transient simulations of the penultimate deglaciation and Last Interglacial period, and compare the results with a transient simulation of the last deglaciation and Holocene. We find that the strengthening of the Atlantic Meridional Overturning Circulation at the end of deglacial millennial-scale events exerts a dominant control on the abrupt initiation of African Humid Periods as the Atlantic Meridional Overturning Circulation modulates the position of the Intertropical Convergence Zone. In addition, residual Northern Hemispheric ice-sheets can delay the peak of the African Humid Period. Through its impact on Northern Hemispheric ice-sheets disintegration and thus Atlantic Meridional Overturning Circulation, the larger rate of insolation increase during the penultimate compared to the last deglaciation can explain the earlier and more abrupt onset of the African Humid Period during the Last Interglacial period. Finally, we show that the mean climate state modulates precipitation variability, with higher variability under wetter background conditions.


Author(s):  
Yun Hu ◽  
Liang Lu ◽  
Tao Zhou ◽  
Kishor Kumar Sarker ◽  
Junman Huang ◽  
...  

Abstract Rhinogobius similis is distributed in East and Southeast Asia. It is an amphidromous species found mostly in freshwater and sometimes brackish waters. We have obtained a high-resolution assembly of the R. similis genome using nanopore sequencing, high throughput chromosome conformation capture (Hi-C) and transcriptomic data. The assembled genome was 890.10 Mb in size and 40.15% in GC content. Including 1,373 contigs with contig N50 is 1.54 Mb, and scaffold N50 is 41.51 Mb. All of the 1,373 contigs were anchored on 22 pairs of chromosomes. The BUSCO evaluation score was 93.02% indicating high quality of genome assembly. The repeat sequences accounted for 34.92% of the whole genome, with Retroelements (30.13%), DNA transposons (1.64%), simple repeats (2.34%) and etc. A total of 31,089 protein-coding genes were predicted in the genome and functionally annotated using Maker, of those genes, 26,893 (86.50%) were found in InterProScan5. There were 1,910 gene families expanded in R. similis, 1,171 gene families contracted and 170 gene families rapidly evolving. We have compared one rapidly change gene family (PF05970) commonly found in four species (Boleophthalmus pectinirostris, Neogobius melanostomus, Periophthalmus magnuspinnatus and R. similis), which was found probably related to the lifespan of those species. During 400 Ka-10 Ka, the period of the Guxiang Ice Age, the population of R. similis decreased drastically, and then increased gradually following the last interglacial period. A high-resolution genome of R. similis should be useful to study taxonomy, biogeography, comparative genomics and adaptive evolution of the most speciose freshwater goby genus, Rhinogobius.


2021 ◽  
Author(s):  
◽  
Kylie Jane Christiansen

<p>Marine Isotope Stage 11 [424 to 374 ka] is unique compared to most other recent Quaternary interglacial periods due to its duration and orbital geometry, both of which have previously been cited as evidence that MIS 11 may be a suitable analogue to project future climate. This study aims to evaluate this prolonged warm period at a key site in the sparsely studied Southwest Pacific Ocean at Ocean Drilling Program [ODP] 1123. This cored site, situated at 3290 m water depth on the northern flank of the Chatham Rise, straddles the northern limit of the modern Subtropical Front, 1100 km east of New Zealand, where sediments record strong subtropical and subpolar signals over interglacial to glacial cycles.  Two species of planktonic foraminifera were analysed, Globigerinoides ruber and Globigerina bulloides [Gs. ruber and Gg. bulloides], for trace elements and size-normalised test weights [SNW; Gg. bulloides only] in order to reconstruct ocean temperature, chemistry, structure and circulation during MIS 11. Gg. bulloides was found to have anomalously low SNW [~50% compared to modern specimens] implying either [i] poor calcification environment due to low CO₃⁻² concentrations, or [ii] post-mortem alteration either in the deep water column or ocean floor environment. Traditional dissolution proxies for ODP 1123 do not indicate significant dissolution during MIS 11. Nevertheless, the inception of modern carbonate platforms and reefs at this time leads to the hypothesis that CO₃⁻² concentrations in the surface ocean were low due to a shifting in the locus of carbonate production, and this is a potential cause, amongst other possibilities, of the low SNW in Gg. bulloides. However, calcification in a low CO₃⁻² concentration ocean does not appear to have significantly affected the geochemical proxies utilised in this study [Mg/Ca-derived paleo-ocean temperatures, δ¹⁸O and micro-nutrients Mn/Ca and Zn/Ca ratios as water-mass tracers] based on comparison with a similar study on younger sediments in the same core. The temperature difference between Gs. ruber and Gg. bulloides is the same as the modern temperature difference at ODP 1123, implying that Gs.ruber was also not markedly affected by either low CO₃⁻² concentrations during calcification or post-mortem dissolution.  Laser ablation inductively coupled plasma mass spectrometry is utalised to measure in situ trace element ratios [Mg, Al, Ca, Mn, Zn and Sr/Ca], and reconstruct the thermal structure of the ocean’s upper 200 m. The main findings are [i] a well stratified upper ocean in warm periods punctuated by well mixed waters in cooler and presumably windier conditions; [ii] an invigorated South Pacific Gyre during the prolonged MIS 11 interglacial, resulting in a greater inflow of subtropical water to ODP 1123 as evinced by Mn/Ca and Zn/Ca ratios and supported by elevated subtropical foramiferal assemblages; [iii] paleo-ocean temperatures that indicate the mean MIS 11 sea surface temperature optimum was ca. 2°C warmer than present; and [iv] a spike in productivity is identified by elevated Mn/Ca and Zn/Ca ratios at ca. 400 ka, coinciding with a spike in eutrophic species abundance, indicating a period of significantly enhanced subtropical water influence.  Records from other New Zealand sites reveal MIS 11 as a prolonged [up to 40 kyr] interglacial period, following a rapid and pronounced 10°C warming from the MIS 12 glacial. Deglaciation occurred 13 kyr earlier than the global benthic record. This rise was punctuated by an Antarctic Cold Reversal-like cooling confirming episodic sub-polar influences at the site. Some differences between the orbital configurations of MIS 1 and 11, particularly at the precessional scale, coupled with apparently unusual ocean chemistry [e.g., low CO₃⁻²] during MIS 11, suggest that MIS 11 may not be an ideal analogue for the Holocene.</p>


2021 ◽  
Author(s):  
◽  
Kylie Jane Christiansen

<p>Marine Isotope Stage 11 [424 to 374 ka] is unique compared to most other recent Quaternary interglacial periods due to its duration and orbital geometry, both of which have previously been cited as evidence that MIS 11 may be a suitable analogue to project future climate. This study aims to evaluate this prolonged warm period at a key site in the sparsely studied Southwest Pacific Ocean at Ocean Drilling Program [ODP] 1123. This cored site, situated at 3290 m water depth on the northern flank of the Chatham Rise, straddles the northern limit of the modern Subtropical Front, 1100 km east of New Zealand, where sediments record strong subtropical and subpolar signals over interglacial to glacial cycles.  Two species of planktonic foraminifera were analysed, Globigerinoides ruber and Globigerina bulloides [Gs. ruber and Gg. bulloides], for trace elements and size-normalised test weights [SNW; Gg. bulloides only] in order to reconstruct ocean temperature, chemistry, structure and circulation during MIS 11. Gg. bulloides was found to have anomalously low SNW [~50% compared to modern specimens] implying either [i] poor calcification environment due to low CO₃⁻² concentrations, or [ii] post-mortem alteration either in the deep water column or ocean floor environment. Traditional dissolution proxies for ODP 1123 do not indicate significant dissolution during MIS 11. Nevertheless, the inception of modern carbonate platforms and reefs at this time leads to the hypothesis that CO₃⁻² concentrations in the surface ocean were low due to a shifting in the locus of carbonate production, and this is a potential cause, amongst other possibilities, of the low SNW in Gg. bulloides. However, calcification in a low CO₃⁻² concentration ocean does not appear to have significantly affected the geochemical proxies utilised in this study [Mg/Ca-derived paleo-ocean temperatures, δ¹⁸O and micro-nutrients Mn/Ca and Zn/Ca ratios as water-mass tracers] based on comparison with a similar study on younger sediments in the same core. The temperature difference between Gs. ruber and Gg. bulloides is the same as the modern temperature difference at ODP 1123, implying that Gs.ruber was also not markedly affected by either low CO₃⁻² concentrations during calcification or post-mortem dissolution.  Laser ablation inductively coupled plasma mass spectrometry is utalised to measure in situ trace element ratios [Mg, Al, Ca, Mn, Zn and Sr/Ca], and reconstruct the thermal structure of the ocean’s upper 200 m. The main findings are [i] a well stratified upper ocean in warm periods punctuated by well mixed waters in cooler and presumably windier conditions; [ii] an invigorated South Pacific Gyre during the prolonged MIS 11 interglacial, resulting in a greater inflow of subtropical water to ODP 1123 as evinced by Mn/Ca and Zn/Ca ratios and supported by elevated subtropical foramiferal assemblages; [iii] paleo-ocean temperatures that indicate the mean MIS 11 sea surface temperature optimum was ca. 2°C warmer than present; and [iv] a spike in productivity is identified by elevated Mn/Ca and Zn/Ca ratios at ca. 400 ka, coinciding with a spike in eutrophic species abundance, indicating a period of significantly enhanced subtropical water influence.  Records from other New Zealand sites reveal MIS 11 as a prolonged [up to 40 kyr] interglacial period, following a rapid and pronounced 10°C warming from the MIS 12 glacial. Deglaciation occurred 13 kyr earlier than the global benthic record. This rise was punctuated by an Antarctic Cold Reversal-like cooling confirming episodic sub-polar influences at the site. Some differences between the orbital configurations of MIS 1 and 11, particularly at the precessional scale, coupled with apparently unusual ocean chemistry [e.g., low CO₃⁻²] during MIS 11, suggest that MIS 11 may not be an ideal analogue for the Holocene.</p>


Sign in / Sign up

Export Citation Format

Share Document