Cause of interdecadal change of tropical cyclone controlling parameter in the western North Pacific

2017 ◽  
Vol 51 (1-2) ◽  
pp. 719-732 ◽  
Author(s):  
Feng Hu ◽  
Tim Li ◽  
Jia Liu ◽  
Melinda Peng
2020 ◽  
Vol 54 (3-4) ◽  
pp. 2237-2248 ◽  
Author(s):  
Qiong Wu ◽  
Xiaochun Wang ◽  
Li Tao

AbstractIn this study, we analyzed the impacts of Western North Pacific Subtropical High (WNPSH) on tropical cyclone (TC) activity on both interannual and interdecadal timescales. Based on a clustering analysis method, we grouped TCs in the Western North Pacific into three clusters according to their track patterns. We mainly focus on Cluster 1 (C1) TCs in this work, which is characterized by forming north of 15° N and moving northward. On interannual timescale, the number of C1 TCs is influenced by the intensity variability of the WNPSH, which is represented by the first Empirical Orthogonal Function (EOF) of 850 hPa geopotential height of the region. The WNPSH itself is modulated by the El Niño–Southern Oscillation at its peak phase in the previous winter, as well as Indian and Atlantic Ocean sea surface temperature anomalies in following seasons. The second EOF mode shows the interdecadal change of WNPSH intensity. The interdecadal variability of WNPSH intensity related to the Pacific climate regime shift could cause anomalies of the steering flow, and lead to the longitudinal shift of C1 TC track. Negative phases of interdecadal Pacific oscillation are associated with easterly anomaly of steering flow, westward shift of C1 TC track, and large TC impact on the East Asia coastal area.


SOLA ◽  
2020 ◽  
Vol 16 (0) ◽  
pp. 1-5 ◽  
Author(s):  
Udai Shimada ◽  
Munehiko Yamaguchi ◽  
Shuuji Nishimura

2008 ◽  
Vol 136 (6) ◽  
pp. 2006-2022 ◽  
Author(s):  
Cheng-Shang Lee ◽  
Kevin K. W. Cheung ◽  
Jenny S. N. Hui ◽  
Russell L. Elsberry

Abstract The mesoscale features of 124 tropical cyclone formations in the western North Pacific Ocean during 1999–2004 are investigated through large-scale analyses, satellite infrared brightness temperature (TB), and Quick Scatterometer (QuikSCAT) oceanic wind data. Based on low-level wind flow and surge direction, the formation cases are classified into six synoptic patterns: easterly wave (EW), northeasterly flow (NE), coexistence of northeasterly and southwesterly flow (NE–SW), southwesterly flow (SW), monsoon confluence (MC), and monsoon shear (MS). Then the general convection characteristics and mesoscale convective system (MCS) activities associated with these formation cases are studied under this classification scheme. Convection processes in the EW cases are distinguished from the monsoon-related formations in that the convection is less deep and closer to the formation center. Five characteristic temporal evolutions of the deep convection are identified: (i) single convection event, (ii) two convection events, (iii) three convection events, (iv) gradual decrease in TB, and (v) fluctuating TB, or a slight increase in TB before formation. Although no dominant temporal evolution differentiates cases in the six synoptic patterns, evolutions ii and iii seem to be the common routes taken by the monsoon-related formations. The overall percentage of cases with MCS activity at multiple times is 63%, and in 35% of cases more than one MCS coexisted. Most of the MC and MS cases develop multiple MCSs that lead to several episodes of deep convection. These two patterns have the highest percentage of coexisting MCSs such that potential interaction between these systems may play a role in the formation process. The MCSs in the monsoon-related formations are distributed around the center, except in the NE–SW cases in which clustering of MCSs is found about 100–200 km east of the center during the 12 h before formation. On average only one MCS occurs during an EW formation, whereas the mean value is around two for the other monsoon-related patterns. Both the mean lifetime and time of first appearance of MCS in EW are much shorter than those developed in other synoptic patterns, which indicates that the overall formation evolution in the EW case is faster. Moreover, this MCS is most likely to be found within 100 km east of the center 12 h before formation. The implications of these results to internal mechanisms of tropical cyclone formation are discussed in light of other recent mesoscale studies.


Sign in / Sign up

Export Citation Format

Share Document