Time course of myocardial stromal cell?derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction

2005 ◽  
Vol 100 (3) ◽  
pp. 217-223 ◽  
Author(s):  
J. Ma ◽  
J. Ge ◽  
Sh. Zhang ◽  
A. Sun ◽  
J. Shen ◽  
...  
2007 ◽  
Vol 21 (6) ◽  
Author(s):  
Smita Swaminathan Iyer ◽  
Jianguo Xu ◽  
Dean P Jones ◽  
Kenneth Brigham ◽  
Mauricio Rojas

Blood ◽  
1998 ◽  
Vol 91 (12) ◽  
pp. 4523-4530 ◽  
Author(s):  
Robert Möhle ◽  
Frank Bautz ◽  
Shahin Rafii ◽  
Malcolm A.S. Moore ◽  
Wolfram Brugger ◽  
...  

Abstract The chemokine stromal cell-derived factor-1 (SDF-1) and its receptor CXCR-4 (fusin, LESTR) are likely to be involved in the trafficking of hematopoietic progenitor and stem cells, as suggested by the reduced bone marrow hematopoiesis in SDF-1–deficient mice and the chemotactic effect of SDF-1 on CD34+ progenitor cells. Migration of leukemic cells might also depend on the expression of chemokine receptors. Therefore, we analyzed expression of CXCR-4 on mobilized normal CD34+ progenitors and leukemic cells. In addition, SDF-1–induced transendothelial migration across a bone marrow endothelial cell layer was assessed in vitro. By flow cytometry, CXCR-4 was found to be expressed in significant amounts on circulating CD34+ hematopoietic progenitor cells, including more primitive subsets (CD34+/CD38− and CD34+/Thy-1+ cells). In accordance with the immunofluorescence data, CD34+ progenitors efficiently migrated across endothelium in response to SDF-1 containing conditioned medium from the stromal cell line MS-5. Leukemic blasts (mostly CD34+) from patients with acute myeloblastic leukemia (AML) expressed variable amounts of CXCR-4, which was functionally active, as demonstrated by a positive correlation between the SDF-1–induced transendothelial migration and the cell surface density of CXCR-4 (r = 0.97). Also recombinant SDF-1β induced migration of CXCR-4–positive leukemic blasts. The effect of both conditioned medium and recombinant SDF-1 was inhibited by a CXCR-4 blocking antibody. In contrast, CD34+ leukemic cell lines (KG1, KG1a, Kasumi-1, MOLM-1) expressed low levels or were negative for CXCR-4, and did not migrate. By reverse transcriptase-polymerase chain reaction (RT-PCR), however, basal levels of CXCR-4 mRNA were also detected in all leukemic cell lines. We conclude that CXCR-4 is expressed on CD34+cells including more primitive, pluripotent progenitors, and may therefore play a role in the homing of hematopoietic stem cells. CXCR-4 expressed in variable amounts on primary AML leukemic cells is functionally active and may be involved in the trafficking of malignant hematopoietic cells.


2005 ◽  
Vol 96 (1) ◽  
pp. 6-8 ◽  
Author(s):  
Florian P. Limbourg ◽  
Helmut Drexler

Sign in / Sign up

Export Citation Format

Share Document