transendothelial migration
Recently Published Documents


TOTAL DOCUMENTS

765
(FIVE YEARS 71)

H-INDEX

81
(FIVE YEARS 5)

2021 ◽  
pp. ji2001385
Author(s):  
Claire W. Chang ◽  
Ni Cheng ◽  
Yanyan Bai ◽  
Randal A. Skidgel ◽  
Xiaoping Du

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 436-436
Author(s):  
Claire W Chang ◽  
Ni Cheng ◽  
Randal Skidgel ◽  
Yanyan Bai ◽  
Xiaoping Du

Abstract Transendothelial migration of neutrophils requires chemoattractant signals and also integrin family of adhesion receptors, particularly the β 2 family of integrins, including Mac-1 and LFA-1. Signals transmitted by G protein-coupled receptors (GPCR) for chemoattractants and cytokines induces inside-out signaling activating the ligand binding function of integrins. Conversely ligand binding to integrins stimulates outside-in signaling, leading to cell spreading, retraction and migration. The heterotrimeric G protein subunit, Gα13, is important for GPCR signaling leading to RhoA activation but also binds to integrins, including β2 integrins to stimulate outside-in signaling. To study the roles of Gα13 in neutrophil migration, we tested the effect of Gα13 knockout on transendothelial migration of neutrophils stimulated by chemoattractant fMIVIL. We demonstrate that transendothelial migration of Gα13 knockout neutrophils was significantly but partially reduced as compared with wild type mice. Transendothelial migration of Gα13 knockout neutrophils is similar to wild type neutrophil migration neutralized with an anti-Mac1 (anti-αm) antibody, and was not further inhibited by the anti-Mac1 antibody, suggesting that transendothelial migration mediated by integrin αmβ2 was predominantly Gα13-dependent. Interestingly, either anti-β2 antibody or anti-LFA1 (anti-αL) antibody appeared to inhibit transendothelial migration of not only wild type neutrophils, but also to a degree, Gα13-knockout neutrophils, suggesting a minor LFA1-dependent but Gα13-independent component of transendothelial migration in addition to the Gα13-dependent transendothlial migration. Furthermore, even though the fibrinogen and ICAM-1 are both β2 ligands, we show that more neutrophils migrated through ICAM-1-coated transwells than fibrinogen-coated transwells, and only ICAM-1-mediated neutrophil migration is Gα13 dependent, suggesting that Gα13-dependent neutrophil migration is selective for certain β2 integrin ligand (ICAM-1). Importantly, Gα13 knockout selectively inhibited the velocity of neutrophil migration on integrin ligand ICAM-1, but had no effect on the directionality of neutrophil migration which requires GPCR-dependent chemoattactant signaling. To understand whether and how Gα13 regulate integrin signaling, we show that Gα13 knockout did not affect the static adhesion of neutrophils to ICAM1, but significantly inhibited neutrophil spreading on ICAM-1. Furthermore, Gα13 bound to β2 integrins in neutrophils adherent on ICAM-1, and this binding was inhibited by the ExE motif peptide MB2mP6 derived from the Gα13 binding site of β2 integrin cytoplasmic domain. MB2mP6 also inhibited transendothelial cell migration similarly as Gα13 knockout. These data suggest that Gα13 plays an important role in promoting β2-integrin dependent neutrophil transendothelial migration mainly by mediating integrin outside-in signaling. Consistent with previous findings of the role of Gα13-dependent outside-in signaling in negative regulation of RhoA in other integrin subtypes, both Gα13 knockout and MB2mP6 abolished the transient inhibition in RhoA during adhesion of neutrophils on ICAM-1. These data suggest that Gα13 mediates outside-in signaling and transient inhibition of RhoA, and thus promotes neutrophil spreading and migration on integrin ligands. To test the role of Gα13 in neutrophil migration in vivo, we showed that neutrophil infiltration in vivo was reduced in leukocyte-selective Gα13 knockout mice using both thioglycolate-induced peritoneal neutrophil infiltration model and LPS-induced neutrophil lung infiltration model in vivo. Furthermore, MB2mP6 inhibited neutrophil infiltration in cardiac tissues in the cardiac ischemia-reperfusion injury model in mice. These data suggest that Gα13-integrin interaction plays an essential role in the integrin-dependent transendothelial migration and is likely to be important in neutrophils' immune and inflammatory functions. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 22 (21) ◽  
pp. 11765
Author(s):  
Francesco Dituri ◽  
Serena Mancarella ◽  
Grazia Serino ◽  
Nada Chaoul ◽  
Luigi Giovanni Lupo ◽  
...  

The balance between anti-tumor and tumor-promoting immune cells, such as CD4+ Th1 and regulatory T cells (Tregs), respectively, is assumed to dictate the progression of hepatocellular carcinoma (HCC). The transforming growth factor beta (TGFβ) markedly shapes the HCC microenvironment, regulating the activation state of multiple leukocyte subsets and driving the differentiation of cancer associated fibroblasts (CAFs). The fibrotic (desmoplastic) reaction in HCC tissue strongly depends on CAFs activity. In this study, we attempted to assess the role of TGFβ on transendothelial migration of Th1-oriented and Treg-oriented CD4+ T cells via a direct or indirect, CAF-mediated mechanisms, respectively. We found that the blockage of TGFβ receptor I-dependent signaling in Tregs resulted in impaired transendothelial migration (TEM) of these cells. Interestingly, the secretome of TGFβ-treated CAFs inhibited the TEM of Tregs but not Th1 cells, in comparison to the secretome of untreated CAFs. In addition, we found a significant inverse correlation between alpha-SMA and FoxP3 (marker of Tregs) mRNA expression in a microarray analysis involving 78 HCCs, thus suggesting that TGFβ-activated stromal cells may counteract the trafficking of Tregs into the tumor. The apparent dual behavior of TGFβ as both pro- and anti-tumorigenic cytokines may add a further level of complexity to the mechanisms that regulate the interactions among cancerous, stromal, and immune cells within HCC, as well as other solid tumors, and contribute to better manipulation of the TGFβ signaling as a therapeutic target in HCC patients.


Author(s):  
Chengmei Huang ◽  
Ruizhang Ou ◽  
Xiaoning Chen ◽  
Yaxin Zhang ◽  
Jiexi Li ◽  
...  

Abstract Background Tumor-associated macrophages (TAMs) are key regulators of the complex interplay between cancer and the immune microenvironment. Tumor cell-derived spondin 2 (SPON2) is an extracellular matrix glycoprotein that has complicated roles in recruitment of macrophages and neutrophils during inflammation. Overexpression of SPON2 has been shown to promote tumor cell migration in colorectal cancer (CRC). However, the mechanism by which SPON2 regulates the accumulation of TAMs in the tumor microenvironment (TME) of CRC is unknown. Methods Immunohistochemistry was used to examine SPON2 expression in clinical CRC tissues. In vitro migration assays, transendothelial migration assays (iTEM), and cell adhesion assays were used to investigate the effects of SPON2 on monocyte/macrophage migration. Subcutaneous tumor formation and orthotopic implantation assays were performed in C57 BL/6 mice to confirm the effects of SPON2 on TAM infiltration in tumors. Results SPON2 expression is positively correlated with M2-TAM infiltration in clinical CRC tumors and poor prognosis of CRC patients. In addition, SPON2 promotes cytoskeletal remodeling and transendothelial migration of monocytes by activating integrin β1/PYK2 axis. SPON2 may indirectly induce M2-polarization through upregulating cytokines including IL10, CCL2 and CSF1 expression in tumor cells. Blocking M2 polarization and Macrophage depletion inhibited the SPON2-induced tumors growth and invasion. Furthermore, blocking the SPON2/integrin β1/PYK2 axis impairs the transendothelial migration of monocytes and cancer-promoting functions of TAMs in vivo. Conclusions Our findings demonstrate that SPON2-driven M2-TAM infiltration plays an important role during CRC tumor growth and metastasis. SPON2 may be a valuable biomarker guiding the use of macrophage-targeting strategies and a potential therapeutic target in advanced CRC.


Author(s):  
Ashley Kramer ◽  
Yuliana Astuti ◽  
Alexis Elfstrum ◽  
Michael Jonathan Lehrke ◽  
Jakub Tolar ◽  
...  

Hematopoietic cell homing after hematopoietic cell transplant (HCT) is governed by several pathways involving marrow niche cells that are evoked after pre-HCT conditioning. To understand the factors that play a role in homing, we performed expression analysis on the zebrafish marrow niche cells following conditioning. We determined that the non-collagenous protein extracellular matrix related protein dermatopontin (Dpt) was upregulated seven-fold in response to irradiation. Studies in mice revealed DPT induction both with radiation and lipopolysaccharide exposure. Interestingly, we found that co-incubation of zebrafish or murine hematopoietic cells with rDPT impedes hematopoietic stem and progenitor cell homing by 50% and 86%, respectively. Similarly, this translated into a 24% reduction in long term engraftment (versus control, p = 0.01). We found DPT to interact with VLA-4 and block hematopoietic - endothelial cell adhesion and transendothelial migration. Finally, a DPT knockout mouse displayed a 60% increase in homing of hematopoietic cells versus wildtype (p = 0.03) with slight improvement in long-term LSK-SLAM engraftment (2-fold, p = 0.04). These data show that the extracellular matrix (ECM)-related protein DPT increases with radiation and transiently impedes the transendothelial migration of hematopoietic cells to the marrow.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1589
Author(s):  
Reou Tanabe ◽  
Yuko Morikawa

A small fraction of HIV-1-infected T cells forms populations of latently infected cells when they are a naive T-cell subset or in transit to a resting memory state. Latently HIV-1-infected cells reside in lymphoid tissues and serve as viral reservoirs. However, whether they systemically recirculate in the body and re-enter the lymphoid nodes are unknown. Here, we employed two in-vitro cell coculture systems mimicking the lymphatic endothelium in lymph nodes and investigated the homing potential, specifically the transendothelial migration (TEM), of two latently HIV-1-infected cell lines (J1.1 and ACH-2). In trans-well coculture systems, J1.1 and ACH-2 showed higher TEM efficiencies than their parental uninfected and acutely infected cells. The efficiency of TEM was enhanced by the presence of stromal cells, such as HS-5 and fibroblastic reticular cells. In an in-vitro reconstituted, three-dimensional coculture system in which stromal cells are embedded in collagen matrices, J1.1 showed slightly higher TEM efficiency in the presence of HS-5. In accordance with these phenotypes, latently infected cells adhered to the endothelial cells more efficiently than uninfected cells. Together, our study showed that latently HIV-1-infected cells enhanced cell adhesion and TEM abilities, suggesting their potential for efficient homing to lymph nodes.


2021 ◽  
Vol 22 (15) ◽  
pp. 8234
Author(s):  
Luuk de Haan ◽  
Johnny Suijker ◽  
Ruthger van Roey ◽  
Nina Berges ◽  
Elissaveta Petrova ◽  
...  

The recruitment of T cells is a crucial component in the inflammatory cascade of the body. The process involves the transport of T cells through the vascular system and their stable arrest to vessel walls at the site of inflammation, followed by extravasation and subsequent infiltration into tissue. Here, we describe an assay to study 3D T cell dynamics under flow in real time using a high-throughput, artificial membrane-free microfluidic platform that allows unimpeded extravasation of T cells. We show that primary human T cells adhere to endothelial vessel walls upon perfusion of microvessels and can be stimulated to undergo transendothelial migration (TEM) by TNFα-mediated vascular inflammation and the presence of CXCL12 gradients or ECM-embedded melanoma cells. Notably, migratory behavior was found to differ depending on T cell activation states. The assay is unique in its comprehensiveness for modelling T cell trafficking, arrest, extravasation and migration, all in one system, combined with its throughput, quality of imaging and ease of use. We envision routine use of this assay to study immunological processes and expect it to spur research in the fields of immunological disorders, immuno-oncology and the development of novel immunotherapeutics.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4583
Author(s):  
Eliav Blum ◽  
Raanan Margalit ◽  
Laura Levy ◽  
Tamar Getter ◽  
Ron Lahav ◽  
...  

We recently developed a molecule (GT-73) that blocked leukocyte transendothelial migration from blood to the peripheral tissues, supposedly by affecting the platelet endothelial cell adhesion molecule (PECAM-1) function. GT-73 was tested in an LPS-induced acute respiratory distress syndrome (ARDS) mouse model. The rationale for this is based on the finding that the mortality of COVID-19 patients is partly caused by ARDS induced by a massive migration of leukocytes to the lungs. In addition, the role of tert-butyl and methyl ester moieties in the biological effect of GT-73 was investigated. A human leukocyte, transendothelial migration assay was applied to validate the blocking effect of GT-73 derivatives. Finally, a mouse model of LPS-induced ARDS was used to evaluate the histological and biochemical effects of GT-73. The obtained results showed that GT-73 has a unique structure that is responsible for its biological activity; two of its chemical moieties (tert-butyl and a methyl ester) are critical for this effect. GT-73 is a prodrug, and its lipophilic tail covalently binds to PECAM-1 via Lys536. GT-73 significantly decreased the number of infiltrating leukocytes in the lungs and reduced the inflammation level. Finally, GT-73 reduced the levels of IL-1β, IL-6, and MCP-1 in bronchoalveolar lavage fluid (BALF). In summary, we concluded that GT-73, a blocker of white blood cell transendothelial migration, has a favorable profile as a drug candidate for the treatment of ARDS in COVID-19 patients.


2021 ◽  
Author(s):  
Aarren J. Mannion ◽  
Adam F. Odell ◽  
Alison Taylor ◽  
Pamela F. Jones ◽  
Graham P Cook

Metastasis requires tumour cells to cross endothelial cell (EC) barriers using pathways similar to those used by leucocytes during inflammation. Cell surface CD99 is expressed by healthy leucocytes and EC and participates in inflammatory transendothelial migration (TEM). Tumour cells also express CD99 and we have analysed its role in tumour progression and cancer cell TEM. Tumour cell CD99 was required for adhesion to ECs, but inhibited invasion of the endothelial barrier and migratory activity. Furthermore, CD99 depletion in tumour cells caused redistribution of the actin cytoskeleton and increased activity of the Rho GTPase CDC42, known for its role in actin remodelling and cell migration. In a xenograft model of breast cancer, tumour cell CD99 expression inhibited metastatic progression and patient samples showed reduced expression of the CD99 gene in brain metastases compared to matched primary breast tumours. We conclude that CD99 negatively regulates CDC42 and cell migration. However, CD99 has both pro- and anti-tumour activity and our data suggests that this results in part from its functional linkage to CDC42 and the diverse signalling pathways downstream of this Rho GTPase.


Sign in / Sign up

Export Citation Format

Share Document