TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury

2014 ◽  
Vol 109 (5) ◽  
Author(s):  
Yi Liu ◽  
Kun Lian ◽  
Lijian Zhang ◽  
Rutao Wang ◽  
Fu Yi ◽  
...  
2020 ◽  
Vol 19 (5) ◽  
pp. 1031-1036
Author(s):  
Guixiang Zhao ◽  
Xiaoyun Ma ◽  
Juledezi Hailati ◽  
Zhen Bao ◽  
Maerjiaen Bakeyi ◽  
...  

Purpose: To determine the involvement of NLRP3 signaling pathway in the preventive role of daucosterol in acute myocardial infarction (AMI).Methods: H9C2 cells were pretreated with daucosterol before hypoxia/reoxygenation (HR) injury. Myocardial ischemia reperfusion (IR) was established in male SD rats, followed by reperfusion. Myocardial infarct size was measured. The serum levels of creatine kinase (CK), lactate  dehydrogenase (LDH), total superoxide dismutase (T-SOD), and malondialdehyde (MDA) were determined using commercial kits. NLRP3 inflammasome activation was assessed by western blotting.Results: Myocardial infarct size was smaller after IR injury in rats pretreated with daucosterol (10 and 50 mg/kg) than that pretreated with daucosterol (0 and 1 mg/kg). The increase in LDH, CK, and MDA levels after IR injury was reduced following daucosterol pretreatment. Reactive oxygen species (ROS) production increased, whereas T-SOD activity decreased after IR injury. These changes were prevented by pretreatment of daucosterol (10 and 50 mg/kg). Protein expression of NLRP3 inflammasome increased after IR injury in H9C2 cells while pretreatment with daucosterol inhibited the upregulation of NLRP3 inflammasome.Conclusion: The cardioprotective effect of daucosterol pretreatment appears to be mediated via the inactivation of ROS-related NLRP3 inflammasome, suggesting that daucosteol might be a potential therapeutic drug for AMI. Keywords: Daucosterol, Myocardial ischemia, Reperfusion injury, Reactive oxygen species, NLRP3 inflammasome


Sign in / Sign up

Export Citation Format

Share Document