cardiac microvascular endothelial cells
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 26)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Chun-Shui Pan ◽  
Li Yan ◽  
Se-Qi Lin ◽  
Ke He ◽  
Yuan-Chen Cui ◽  
...  

Aims: Coronary microvascular hyperpermeability is an important contributor to ischemia or reperfusion (I/R) injury. However, the effective strategy for this insult remains limited. This study aimed to explore the protective effect of the compound Chinese medicine QiShenYiQi Pills (QSYQ) against coronary microvascular hyperpermeability after cardiac I/R with focusing on the underlying mechanism.Methods and Results: Male Sprague-Dawley rats under anesthesia were subjected to occlusion of left coronary anterior descending artery followed by reperfusion. QSYQ was administrated 90 min before ischemia initiation. Human cardiac microvascular endothelial cells (HCMECs) underwent hypoxia or reoxygenation (H/R) challenge with QSYQ administrated 1 h prior to hypoxia. QSYQ exhibited effects on attenuating microvascular damage and albumin leakage after I/R injury, showing a role in maintaining endothelial junctions, caveolae, and collagen in basement membrane (BM) of microvessels. Study using HCMECs disclosed that QSYQ protected endothelial barrier from impairment by H/R, attenuating the decline of respiratory chain complex I and ATP synthase, activation of Src/caveolin-1 and increase of RhoA/ROCK/p-MLC, MMP-9, and CTSS. PP2, a Src inhibitor, partially imitated the effect of QSYQ.Conclusions: The QSYQ was able to prevent I/R-induced cardiac microvascular hyperpermeability via a mechanism involving Src/caveolin-1 and RhoA/ROCK/MLC signaling.


2021 ◽  
pp. 1-7
Author(s):  
Yan Zhang ◽  
Zhengru Zhu ◽  
Tingting Wang ◽  
Yuan Dong ◽  
Yanhong Fan ◽  
...  

Cardiac fibroblast (CF)-mediated extracellular matrix (ECM) remodeling is the key pathological basis for the occurrence and development of diabetic cardiomyopathy (DCM); its specific regulatory mechanisms have been widely studied but remain unclear. Exosomes are a type of stable signal transmission medium, and exosome-mediated cell-cell interactions play an important role in DCM. Endothelial cells form an important barrier between circulation and cardiomyocytes, in addition to being an important endocrine organ of the heart and an initial target for hyperglycemia, a key aspect in the development of DCM. We previously showed that exosomes derived from cardiac microvascular endothelial cells (CMECs) under high glucose conditions can be taken up by cardiomyocytes and regulate autophagy, apoptosis, and glucose metabolism. Consequently, in the present study, we focused on how exosomes mediate the interaction between CMECs and CFs. Surprisingly, exosomes derived from CMECs under high glucose were rich in TGF-β1 mRNA, which significantly promoted the activation of CFs. Additionally, exosomes derived from CMECs under high glucose conditions aggravated perivascular and interstitial fibrosis in mice treated with streptozotocin. Herein, we demonstrated for the first time the capacity of exosomes, released by CMECs under high glucose, to mediate fibroblast activation through TGF-β1 mRNA, which may be potentially beneficial in the development of exosome-targeted therapies to control DCM.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Yan Zou ◽  
Le Pan ◽  
Yi Shen ◽  
Xiang Wang ◽  
Chenxing Huang ◽  
...  

AbstractProgressive cardiac fibrosis accelerates the development of heart failure. Here, we aimed to explore serum Wnt5a and Wnt11 levels in hypertension patients, the roles of Wnt5a and Wnt11 in cardiac fibrosis and potential mechanisms under pressure overload. The pressure overload mouse model was built by transverse aortic constriction (TAC). Cardiac fibrosis was analyzed by Masson’s staining. Serum Wnt5a or Wnt11 was elevated and associated with diastolic dysfunction in hypertension patients. TAC enhanced the expression and secretion of Wnt5a or Wnt11 from cardiomyocytes (CMs), cardiac fibroblasts (CFs), and cardiac microvascular endothelial cells (CMECs). Knockdown of Wnt5a and Wnt11 greatly improved cardiac fibrosis and function at 4 weeks after TAC. In vitro, shWnt5a or shWnt11 lentivirus transfection inhibited pro-fibrotic effects in CFs under mechanical stretch (MS). Similarly, conditional medium from stretched-CMs transfected with shWnt5a or shWnt11 lentivirus significantly suppressed the pro-fibrotic effects induced by conditional medium from stretched-CMs. These data suggested that CMs- or CFs-derived Wnt5a or Wnt11 showed a pro-fibrotic effect under pressure overload. In vitro, exogenous Wnt5a or Wnt11 activated ERK and p38 (fibrotic-related signaling) pathway, promoted the phosphorylation of EGFR, and increased the expression of Frizzled 5 (FZD5) in CFs. Inhibition or knockdown of EGFR greatly attenuated the increased FZD5, p-p38, and p-ERK levels, and the pro-fibrotic effect induced by Wnt5a or Wnt11 in CFs. Si-FZD5 transfection suppressed the increased p-EGFR level, and the fibrotic-related effects in CFs treated with Wnt5a or Wnt11. In conclusion, pressure overload enhances the secretion of Wnt5a or Wnt11 from CMs and CFs which promotes cardiac fibrosis by activation the crosstalk of FZD5 and EGFR. Thus, Wnt5a or Wnt11 may be a novel therapeutic target for the prevention of cardiac fibrosis under pressure overload.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haitao Zhang ◽  
Yan Shen ◽  
Il-man Kim ◽  
Neal L. Weintraub ◽  
Yaoliang Tang

Diabetes causes hyperglycemia, which can create a stressful environment for cardiac microvascular endothelial cells (CMECs). To investigate the impact of diabetes on the cellular metabolism of CMECs, we assessed glycolysis by quantifying the extracellular acidification rate (ECAR), and mitochondrial oxidative phosphorylation (OXPHOS) by measuring cellular oxygen consumption rate (OCR), in isolated CMECs from wild-type (WT) hearts and diabetic hearts (db/db) using an extracellular flux analyzer. Diabetic CMECs exhibited a higher level of intracellular reactive oxygen species (ROS), and significantly reduced glycolytic reserve and non-glycolytic acidification, as compared to WT CMECs. In addition, OCR assay showed that diabetic CMECs had increased maximal respiration, and significantly reduced non-mitochondrial oxygen consumption and proton leak. Quantitative PCR (qPCR) showed no difference in copy number of mitochondrial DNA (mtDNA) between diabetic and WT CMECs. In addition, gene expression profiling analysis showed an overall decrease in the expression of essential genes related to β-oxidation (Sirt1, Acox1, Acox3, Hadha, and Hadhb), tricarboxylic acid cycle (TCA) (Idh-3a and Ogdh), and electron transport chain (ETC) (Sdhd and Uqcrq) in diabetic CMECs compared to WT CMECs. Western blot confirmed that the protein expression of Hadha, Acox1, and Uqcrq was decreased in diabetic CMECs. Although lectin staining demonstrated no significant difference in capillary density between the hearts of WT mice and db/db mice, diabetic CMECs showed a lower percentage of cell proliferation by Ki67 staining, and a higher percentage of cellular apoptosis by TUNEL staining, compared with WT CMECs. In conclusion, excessive ROS caused by hyperglycemia is associated with impaired glycolysis and mitochondrial function in diabetic CMECs, which in turn may reduce proliferation and promote CMEC apoptosis.


Viruses ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Isabelle Bernard ◽  
Daniel Limonta ◽  
Lara K. Mahal ◽  
Tom C. Hobman

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) poses a persistent threat to global public health. Although primarily a respiratory illness, extrapulmonary manifestations of COVID-19 include gastrointestinal, cardiovascular, renal and neurological diseases. Recent studies suggest that dysfunction of the endothelium during COVID-19 may exacerbate these deleterious events by inciting inflammatory and microvascular thrombotic processes. Although controversial, there is evidence that SARS-CoV-2 may infect endothelial cells by binding to the angiotensin-converting enzyme 2 (ACE2) cellular receptor using the viral Spike protein. In this review, we explore current insights into the relationship between SARS-CoV-2 infection, endothelial dysfunction due to ACE2 downregulation, and deleterious pulmonary and extra-pulmonary immunothrombotic complications in severe COVID-19. We also discuss preclinical and clinical development of therapeutic agents targeting SARS-CoV-2-mediated endothelial dysfunction. Finally, we present evidence of SARS-CoV-2 replication in primary human lung and cardiac microvascular endothelial cells. Accordingly, in striving to understand the parameters that lead to severe disease in COVID-19 patients, it is important to consider how direct infection of endothelial cells by SARS-CoV-2 may contribute to this process.


2020 ◽  
Vol 26 ◽  
Author(s):  
Yanyan Wang ◽  
Jingjing Zhang ◽  
Mingqiang Fu ◽  
Jingfeng Wang ◽  
Xiaotong Cui ◽  
...  

Background and Objective: Angiogenesis is the most important repair process of tissues subjected to ischemic injury. The present study aims to investigate whether the pro-angiogenic effect of Qiliqiangxin prescription (QL) is mediated through miR-21 signaling. Methods: Cardiac microvascular endothelial cells (CMECs) were isolated and cultured from 2-3 weeks old SD rats by the method of planting myocardium tissues, the purity was identified by CD31 immunofluorescence staining. CMECs were then cultured under 1% O2 hypoxia or normoxia condition for 24h in the presence or absence of QL pretreatment (QL, 0.5mg/ml, 24h). The mimics and inhibitors of miR-21 were transfected into CMECs. miR-21, HIF-1α and VEGF expressions of CMECs were then detected by qRT-PCR and/or Western blot. The proliferation, migration and tube formation functions of CMECs were assessed using the BrdU assay, wound healing test and tube formation assay, respectively. Results: The results showed that compared with control group, hypoxia significantly upregulated the expression of miR-21 and impaired CMECs proliferation, migration and tube formation functions. Compared with hypoxia group, QL further upregulated miR-21, HIF-1α and VEGF expressions, and improved cell proliferation, migration and tube formation of hypoxic CMECs, these effects of QL were abolished by knockdown of miR-21. Conversely, treatment with miR-21 mimics further enhanced QL induced changes in hypoxic CMECs. Conclusions: Our results indicate that the pro-angiogenesis effects of QL on hypoxic CMECs are mediated by activating miR-21, and its downstream HIF-1α/VEGF pathway possibly.


Sign in / Sign up

Export Citation Format

Share Document