Pattern formation revisited within nonequilibrium thermodynamics: Burgers’-type equation

Author(s):  
Václav Klika
1993 ◽  
Vol 3 (6) ◽  
pp. 865-889 ◽  
Author(s):  
Norbert Schwenk ◽  
Hans Wolfgang Spiess
Keyword(s):  

2000 ◽  
Vol 629 ◽  
Author(s):  
Jean-Loup Masson ◽  
Peter F. Green

ABSTRACTResearchers have shown that thin, nonwetting, liquid homopolymer films dewet substrates, forming patterns that reflect fluctuations in the local film thickness. These patterns have been shown to be either discrete cylindrical holes or bicontinuous “spinodal-like” patterns. In this paper we show the existence of a new morphology. During the early stage of dewetting, discrete highly asymmetric holes appear spontaneously throughout the film. The nucleation rate of these holes is faster than their growth rate. The morphology of the late stage of evolution, after 18 days, is characterized by a bicontinuous pattern, distinct form conventional spinodal dewetting patterns. This morphology has been observed for a range of film thicknesses between 7.5 and 21nm. The structural evolution of this intermediate morphology is discussed.


2014 ◽  
Vol 5 (3) ◽  
pp. 871-981 ◽  
Author(s):  
Pang Xiao Feng

We establish the nonlinear quantum mechanics due to difficulties and problems of original quantum mechanics, in which microscopic particles have only a wave feature, not corpuscle feature, which are completely not consistent with experimental results and traditional concept of particle. In this theory the microscopic particles are no longer a wave, but localized and have a wave-corpuscle duality, which are represented by the following facts, the solutions of dynamic equation describing the particles have a wave-corpuscle duality, namely it consists of a mass center with constant size and carrier wave, is localized and stable and has a determinant mass, momentum and energy, which obey also generally conservation laws of motion, their motions meet both the Hamilton equation, Euler-Lagrange equation and Newton-type equation, their collision satisfies also the classical rule of collision of macroscopic particles, the uncertainty of their position and momentum is denoted by the minimum principle of uncertainty. Meanwhile the microscopic particles in this theory can both propagate in solitary wave with certain frequency and amplitude and generate reflection and transmission at the interfaces, thus they have also a wave feature, which but are different from linear and KdV solitary wave’s. Therefore the nonlinear quantum mechanics changes thoroughly the natures of microscopic particles due to the nonlinear interactions. In this investigation we gave systematically and completely the distinctions and variations between linear and nonlinear quantum mechanics, including the significances and representations of wave function and mechanical quantities, superposition principle of wave function, property of microscopic particle, eigenvalue problem, uncertainty relation and the methods solving the dynamic equations, from which we found nonlinear quantum mechanics is fully new and different from linear quantum mechanics. Finally, we verify further the correctness of properties of microscopic particles described by nonlinear quantum mechanics using the experimental results of light soliton in fiber and water soliton, which are described by same nonlinear Schrödinger equation. Thus we affirm that nonlinear quantum mechanics is correct and useful, it can be used to study the real properties of microscopic particles in physical systems.


Author(s):  
Daniel Coelho ◽  
José da Rocha Miranda Pontes ◽  
Norberto Mangiavacchi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document