nonequilibrium thermodynamics
Recently Published Documents


TOTAL DOCUMENTS

627
(FIVE YEARS 88)

H-INDEX

46
(FIVE YEARS 5)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Thiago Werlang ◽  
Maurício Matos ◽  
Frederico Brito ◽  
Daniel Valente

AbstractA longstanding challenge in nonequilibrium thermodynamics is to predict the emergence of self-organized behaviors and functionalities typical of living matter. Despite the progress with classical complex systems, it remains far from obvious how to extrapolate these results down to the quantum scale. Here, we employ the paradigmatic master equation framework to establish that some lifelike behaviors and functionalities can indeed emerge in elementary dissipative quantum systems driven out of equilibrium. Specifically, we find both energy-avoiding (low steady dissipation) and energy-seeking behaviors (high steady dissipation), as well as self-adaptive shifts between these modes, in generic few-level systems. We also find emergent functionalities, namely, a self-organized thermal gradient in the system’s environment (in the energy-seeking mode) and an active equilibration against thermal gradients (in the energy-avoiding mode). Finally, we discuss the possibility that our results could be related to the concept of dissipative adaptation.


2022 ◽  
Vol 962 (1) ◽  
pp. 012032
Author(s):  
A B Ptitsyn

Abstract The thermodynamic foundations of the evolution of the biosphere are considered: the variability of natural systems with different dispersion of their components, the alternative ways of development of such systems, the alternative of intermediate stable states of ecosystems depending on fluctuations of external factors, primarily climate. The necessity of developing a system of mutually agreed complex indicators of this process is postulated. The necessity of including the water content of ecosystems in the number of parameters of nonequilibrium thermodynamics is justified. A new section of land hydrology is formulated -the study of thermodynamic aspects of the dynamics of natural waters.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Kai Lin

This work discusses the black hole thermodynamics in a weak dynamical Anti-de Sitter spacetime, which should be described by the nonequilibrium thermodynamics, because the metric depends on the time coordinate. Taking the Vaidya-Anti-de Sitter black hole spacetime as an example, the local entropy balance equations and principle of minimum entropy generation are derived, and finally, some irreversible effects in nonequilibrium thermodynamics are studied by using the Onsager reciprocal relation.


2021 ◽  
Author(s):  
Yuri Bokhan

The method of manufacturing of ceramic materials on the basis of ferrites of nickel and cobalt by synthesis and sintering in controllable regenerative atmosphere is presented. As the generator of regenerative atmosphere the method of conversion of carbonic gas is offered. Calculation of regenerative atmosphere for simultaneous sintering of ceramic ferrites of nickel and cobalt is carried out. It is offered, methods of the dilated nonequilibrium thermodynamics to view process of distribution of a charge and heat along a thermoelement branch. The model of a thermoelement taking into account various relaxation times of a charge and warmth is constructed.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1584
Author(s):  
Purushottam D. Gujrati

The review deals with a novel approach (MNEQT) to nonequilibrium thermodynamics (NEQT) that is based on the concept of internal equilibrium (IEQ) in an enlarged state space SZ involving internal variables as additional state variables. The IEQ macrostates are unique in SZ and have no memory just as EQ macrostates are in the EQ state space SX⊂SZ. The approach provides a clear strategy to identify the internal variables for any model through several examples. The MNEQT deals directly with system-intrinsic quantities, which are very useful as they fully describe irreversibility. Because of this, MNEQT solves a long-standing problem in NEQT of identifying a unique global temperature T of a system, thus fulfilling Planck’s dream of a global temperature for any system, even if it is not uniform such as when it is driven between two heat baths; T has the conventional interpretation of satisfying the Clausius statement that the exchange macroheatdeQflows from hot to cold, and other sensible criteria expected of a temperature. The concept of the generalized macroheat dQ=deQ+diQ converts the Clausius inequality dS≥deQ/T0 for a system in a medium at temperature T0 into the Clausius equalitydS≡dQ/T, which also covers macrostates with memory, and follows from the extensivity property. The equality also holds for a NEQ isolated system. The novel approach is extremely useful as it also works when no internal state variables are used to study nonunique macrostates in the EQ state space SX at the expense of explicit time dependence in the entropy that gives rise to memory effects. To show the usefulness of the novel approach, we give several examples such as irreversible Carnot cycle, friction and Brownian motion, the free expansion, etc.


2021 ◽  
Vol 104 (8) ◽  
Author(s):  
M. E. Gusakov ◽  
E. M. Kantor ◽  
A. I. Chugunov

2021 ◽  
Vol 155 (11) ◽  
pp. 114101
Author(s):  
Emanuele Penocchio ◽  
Riccardo Rao ◽  
Massimiliano Esposito

Sign in / Sign up

Export Citation Format

Share Document