Identification of intestinal M cells in isolated lymphoid follicles and Peyer’s patches of the Angora rabbit

2010 ◽  
Vol 341 (3) ◽  
pp. 417-427 ◽  
Author(s):  
Feyzullah Beyaz ◽  
Emel Ergün ◽  
Alev G. Bayraktaroğlu ◽  
Levent Ergün
Author(s):  
A. Deka ◽  
M. Talukdar ◽  
D.J. Talukdar

Background: The Pati duck constitutes a major indigenous duck variety in the state of Assam. The study of the gut associated lymphoid tissue (GALT) of Pati duck of Assam is of great value in regard to normal academic and bio-medical research aspects. It is also pre-requisite for correct diagnosis and evaluating the treatment of certain diseases like duck virus enteritis, duck cholera, aflatoxicosis, botulism etc, caused by different types of pathogens, food poisoning and food allergy. Methods: The study was conducted on Pati duck of Assam in where 45 numbers of ducks were selected by irrespective of sex at different stages of development. The birds were divided into five groups depending on its age viz., 1st week, 4th week, 16th week, 24th week and 42nd weeks old. The pieces of gut having lymphoid tissue or Peyer’s patches were collected immediately after slaughter. Samples were made cryosections (-20oC) at 10µm in thickness and were temporally stored at (-22oC). The histochemical staining was done after that. Result: The acid phosphatase activity was weak in the lymphoid follicles of 1st and 4th week of age of Pati duck, while its activity was moderate in 16th, 24th and 42th week of age.The alkaline phosphatase activity was moderate reaction in the lymphoid follicles of 1st and 4th week of age of Pati duck, while its activity was intense in 16th, 24th and 42th week of age of duck. The lymphoid follicles of both Peyer’s patches and solitary lymphoid nodules were showed moderate activity for adenosine tri-phosphatase activity in 1st and 4th week old Pati duck and strong activity in 16th, 24th and 42th week of age of Pati duck, respectively. The lymphoid nodules of intestine showed strong reaction for non-specific esterase activity in all the age groups of Pati duck.


2013 ◽  
Vol 6 (5) ◽  
pp. 1027-1037 ◽  
Author(s):  
A Kobayashi ◽  
D S Donaldson ◽  
C Erridge ◽  
T Kanaya ◽  
I R Williams ◽  
...  

2010 ◽  
Vol 78 (8) ◽  
pp. 3570-3577 ◽  
Author(s):  
Luiz E. Bermudez ◽  
Mary Petrofsky ◽  
Sandra Sommer ◽  
Raúl G. Barletta

ABSTRACT Mycobacterium avium subsp. paratuberculosis, the agent of Johne's disease, infects ruminant hosts by translocation through the intestinal mucosa. A number of studies have suggested that M. avium subsp. paratuberculosis interacts with M cells in the Peyer's patches of the small intestine. The invasion of the intestinal mucosa by M. avium subsp. paratuberculosis and Mycobacterium avium subsp. hominissuis, a pathogen known to interact with intestinal cells, was compared. M. avium subsp. paratuberculosis was capable of invading the mucosa, but it was significantly less efficient at dissemination than M. avium subsp. hominissuis. B-cell knockout (KO) mice, which lack Peyer's patches, were used to demonstrate that M. avium subsp. paratuberculosis enters the intestinal mucosa through enterocytes in the absence of M cells. In addition, the results indicated that M. avium subsp. paratuberculosis had equal abilities to cross the mucosa in both Peyer's patch and non-Peyer's patch segments of normal mice. M. avium subsp. paratuberculosis was also shown to interact with epithelial cells by an α5β1 integrin-independent pathway. Upon translocation, dendritic cells ingest M. avium subsp. paratuberculosis, but this process does not lead to efficient dissemination of the infection. In summary, M. avium subsp. paratuberculosis interacts with the intestinal mucosa by crossing both Peyer's patches and non-Peyer's patch areas but does not translocate or disseminate efficiently.


2004 ◽  
Vol 78 (2) ◽  
pp. 947-957 ◽  
Author(s):  
Amy B. Hutchings ◽  
Anna Helander ◽  
Katherine J. Silvey ◽  
Kartik Chandran ◽  
William T. Lucas ◽  
...  

ABSTRACT Reovirus type 1 Lang (T1L) adheres to M cells in the follicle-associated epithelium of mouse intestine and exploits the transport activity of M cells to enter and infect the Peyer's patch mucosa. Adult mice that have previously cleared a reovirus T1L infection have virus-specific immunoglobulin G (IgG) in serum and IgA in secretions and are protected against reinfection. Our aim in this study was to determine whether secretory IgA is sufficient for protection of Peyer's patches against oral reovirus challenge and, if so, against which reovirus antigen(s) the IgA may be directed. Monoclonal antibodies (MAbs) of the IgA isotype, directed against the σ1 protein of reovirus T1L, the viral adhesin, were produced and tested along with other, existing IgA and IgG MAbs against reovirus T1L outer capsid proteins. Anti-σ1 IgA and IgG MAbs neutralized reovirus T1L in L cell plaque reduction assays and inhibited T1L adherence to L cells and Caco-2BBe intestinal epithelial cells in vitro, but MAbs against other proteins did not. Passive oral administration of anti-σ1 IgA and IgG MAbs prevented Peyer's patch infection in adult mice, but other MAbs did not. When anti-σ1 IgA and IgG MAbs were produced in mice from hybridoma backpack tumors, however, the IgA prevented Peyer's patch infection, but the IgG did not. The results provide evidence that neutralizing IgA antibodies specific for the σ1 protein are protective in vitro and in vivo and that the presence of these antibodies in intestinal secretions is sufficient for protection against entry of reovirus T1L into Peyer's patches.


Sign in / Sign up

Export Citation Format

Share Document