outer capsid
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 23)

H-INDEX

46
(FIVE YEARS 4)

Author(s):  
Hang Su ◽  
Zhiwei Liao ◽  
Chunrong Yang ◽  
Yongan Zhang ◽  
Jianguo Su

Grass carp reovirus (GCRV) fibrin VP56 and major outer capsid protein VP4 inlay and locate on the outer surface of GCRV-II and GCRV-III, which causes tremendous loss in grass carp and black carp industries. Fibrin is involved in cell attachment and plays an important role in reovirus infection.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 959
Author(s):  
Celeste M. Donato ◽  
Julie E. Bines

Group A rotaviruses belong to the Reoviridae virus family and are classified into G and P genotypes based on the outer capsid proteins VP7 and VP4, respectively [...]


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1455
Author(s):  
Petra C. Fay ◽  
Fauziah Mohd Jaafar ◽  
Carrie Batten ◽  
Houssam Attoui ◽  
Keith Saunders ◽  
...  

Bluetongue (BT) is a severe and economically important disease of ruminants that is widely distributed around the world, caused by the bluetongue virus (BTV). More than 28 different BTV serotypes have been identified in serum neutralisation tests (SNT), which, along with geographic variants (topotypes) within each serotype, reflect differences in BTV outer-capsid protein VP2. VP2 is the primary target for neutralising antibodies, although the basis for cross-reactions and serological variations between and within BTV serotypes is poorly understood. Recombinant BTV VP2 proteins (rVP2) were expressed in Nicotiana benthamiana, based on sequence data for isolates of thirteen BTV serotypes (primarily from Europe), including three ‘novel’ serotypes (BTV-25, -26 and -27) and alternative topotypes of four serotypes. Cross-reactions within and between these viruses were explored using rabbit anti-rVP2 sera and post BTV-infection sheep reference-antisera, in I-ELISA (with rVP2 target antigens) and SNT (with reference strains of BTV-1 to -24, -26 and -27). Strong reactions were generally detected with homologous rVP2 proteins or virus strains/serotypes. The sheep antisera were largely serotype-specific in SNT, but more cross-reactive by ELISA. Rabbit antisera were more cross-reactive in SNT, and showed widespread, high titre cross-reactions against homologous and heterologous rVP2 proteins in ELISA. Results were analysed and visualised by antigenic cartography, showing closer relationships in some, but not all cases, between VP2 topotypes within the same serotype, and between serotypes belonging to the same ‘VP2 nucleotype’.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaoman Sun ◽  
Dandi Li ◽  
Zhaojun Duan

Rotavirus (RV) is an important pathogen causing acute gastroenteritis in young humans and animals. Attachment to the host receptor is a crucial step for the virus infection. The recent advances in illustrating the interactions between RV and glycans promoted our understanding of the host range and epidemiology of RVs. VP8*, the distal region of the RV outer capsid spike protein VP4, played a critical role in the glycan recognition. Group A RVs were classified into different P genotypes based on the VP4 sequences and recognized glycans in a P genotype-dependent manner. Glycans including sialic acid, gangliosides, histo-blood group antigens (HBGAs), and mucin cores have been reported to interact with RV VP8*s. The glycan binding specificities of VP8*s of different RV genotypes have been studied. Here, we mainly discussed the structural basis for the interactions between RV VP8*s and glycans, which provided molecular insights into the receptor recognition and host tropism, offering new clues to the design of RV vaccine and anti-viral agents.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1075
Author(s):  
Marlen Martinez-Gutierrez ◽  
Estiven Hernandez-Mira ◽  
Santiago Rendon-Marin ◽  
Julian Ruiz-Saenz

Rotavirus A (RVA) has been considered the main cause of diarrheal disease in children under five years in emergency services in both developed and developing countries. RVA belongs to the Reoviridae family, which comprises 11 segments of double-stranded RNA (dsRNA) as a genomic constellation that encodes for six structural and five to six nonstructural proteins. RVA has been classified in a binary system with Gx[Px] based on the spike protein (VP4) and the major outer capsid glycoprotein (VP7), respectively. The emerging equine-like G3P[8] DS-1-like strains reported worldwide in humans have arisen an important concern. Here, we carry out the complete genome characterization of a previously reported G3P[8] strain in order to recognize the genetic diversity of RVA circulating among infants in Colombia. A near-full genome phylogenetic analysis was done, confirming the presence of the novel equine-like G3P[8] with a Wa-like backbone for the first time in Colombia. This study demonstrated the importance of surveillance of emerging viruses in the Colombian population; furthermore, additional studies must focus on the understanding of the spread and transmission dynamic of this important RVA strain in different areas of the country.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 398
Author(s):  
Jumari Snyman ◽  
Otto Koekemoer ◽  
Antoinette van Schalkwyk ◽  
Petrus Jansen van Vuren ◽  
Louwtjie Snyman ◽  
...  

Equine encephalosis virus (EEV) is a neglected virus endemic to South Africa and is considered to generally result in mild disease in equines. Specimens were analyzed from live horses that presented with undefined neurological, febrile, or respiratory signs, or sudden and unexpected death. Between 2010 and 2017, 111 of 1523 (7.3%) horse samples tested positive for EEV using a nested real-time reverse transcriptase polymerase chain reaction (rRT-PCR). Clinical signs were reported in 106 (7.2%) EEV positive and 1360 negative horses and included pyrexia (77/106, 72.6%), icterus (20/106, 18.9%) and dyspnea (12/106, 11.3%). Neurological signs were inversely associated with EEV infection (OR < 1, p < 0.05) relative to EEV negative cases despite a high percentage of animals presenting with neurological abnormalities (51/106, 48.1%). Seventeen of the EEV positive horses also had coinfections with either West Nile (5/106, 4.7%), Middelburg (4/106, 3.8%) or African Horse sickness virus (8/106, 7.6%). To investigate a possible genetic link between EEV strains causing the observed clinical signs in horses, the full genomes of six isolates were compared to the reference strains. Based on the outer capsid protein (VP2), serotype 1 and 4 were identified as the predominant serotypes with widespread reassortment between the seven different serotypes.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 945
Author(s):  
Changyong Mu ◽  
Vikram N. Vakharia ◽  
Yong Zhou ◽  
Nan Jiang ◽  
Wenzhi Liu ◽  
...  

The grass carp hemorrhagic disease, caused by the grass carp reovirus (GCRV), has resulted in severe economic losses in the aquaculture industry in China. VP4 and VP35 are outer capsid proteins of GCRV and can induce an immune response in the host. Here, three recombinant baculoviruses, AcMNPV-VP35, AcMNPV-VP4, and AcMNPV-VP35-VP4, were generated to express recombinant VP4 and VP35 proteins from GCRV type II in insect cells by using the Bac-to-Bac baculovirus expression system to create a novel subunit vaccine. The expression of recombinant VP35, VP4, and VP35-VP4 proteins in Sf-9 cells were confirmed by Western blotting and immunofluorescence. Recombinant VP35, VP4, and VP35-VP4 were purified from baculovirus-infected cell lysates and injected intraperitoneally (3 μg/fish) into the model rare minnow, Gobiocypris rarus. After 21 days, the immunized fish were challenged with virulent GCRV. Liver, spleen, and kidney samples were collected at different time intervals to evaluate the protective efficacy of the subunit vaccines. The mRNA expression levels of some immune-related genes detected by using quantitative real-time PCR (qRT-PCR) were significantly upregulated in the liver, spleen, and kidney, with higher expression levels in the VP35-VP4 group. The nonvaccinated fish group showed 100% mortality, whereas the VP35-VP4, VP4, and VP35 groups exhibited 67%, 60%, and 33% survival, respectively. In conclusion, our results revealed that recombinant VP35 and VP4 can induce immunity and protect against GCRV infection, with their combined use providing the best effect. Therefore, VP35 and VP4 proteins can be used as a novel subunit vaccine against GCRV infection.


2020 ◽  
Vol 94 (22) ◽  
Author(s):  
Katherine E. Roebke ◽  
Yingying Guo ◽  
John S. L. Parker ◽  
Pranav Danthi

ABSTRACT Induction of necroptosis by mammalian reovirus requires both type I interferon (IFN)-signaling and viral replication events that lead to production of progeny genomic double-stranded RNA (dsRNA). The reovirus outer capsid protein μ1 negatively regulates reovirus-induced necroptosis by limiting RNA synthesis. To determine if the outer capsid protein σ3, which interacts with μ1, also functions in regulating necroptosis, we used small interfering RNA (siRNA)-mediated knockdown. Similarly to what was observed in diminishment of μ1 expression, knockdown of newly synthesized σ3 enhances necroptosis. Knockdown of σ3 does not impact reovirus RNA synthesis. Instead, this increase in necroptosis following σ3 knockdown is accompanied by an increase in IFN production. Furthermore, ectopic expression of σ3 is sufficient to block IFN expression following infection. Surprisingly, the capacity of σ3 protein to bind dsRNA does not impact its capacity to diminish production of IFN. Consistent with this, infection with a virus harboring a mutation in the dsRNA binding domain of σ3 does not result in enhanced production of IFN or necroptosis. Together, these data suggest that σ3 limits the production of IFN to control innate immune signaling and necroptosis following infection through a mechanism that is independent of its dsRNA binding capacity. IMPORTANCE We use mammalian reovirus as a model to study how virus infection modulates innate immune signaling and cell death induction. Here, we sought to determine how viral factors regulate these processes. Our work highlights a previously unknown role for the reovirus outer capsid protein σ3 in limiting the induction of a necrotic form of cell death called necroptosis. Induction of cell death by necroptosis requires production of interferon. The σ3 protein limits the induction of necroptosis by preventing excessive production of interferon following infection.


2020 ◽  
Author(s):  
Katherine E Roebke ◽  
Yingying Guo ◽  
John S. L. Parker ◽  
Pranav Danthi

ABSTRACTInduction of necroptosis by mammalian reovirus requires both type I interferon (IFN)-signaling and viral replication events that lead to production of progeny genomic dsRNA. The reovirus outer capsid protein µ1 negatively regulates reovirus-induced necroptosis by limiting RNA synthesis. To determine if the outer capsid protein σ3, which interacts with µ1, also functions in regulating cell death, we used siRNA-mediated knockdown. Similar to that observed by diminishment of µ1 expression, knockdown of newly synthesized σ3 enhances necroptosis. σ3 knockdown does not impact reovirus RNA synthesis. Instead, this increase in necroptosis following σ3 knockdown is accompanied by an increase in IFN production. Furthermore, ectopic expression of σ3 is sufficient to block IFN expression following infection. Surprisingly, the capacity of σ3 protein to bind dsRNA does not impact its capacity to diminish production of IFN. Consistent with this, infection with a virus harboring a mutation in the dsRNA binding domain of σ3 does not result in enhanced production of IFN or cell death. Together, these data suggest that σ3 limits the production of IFN to control innate immune signaling and cell death following infection through a mechanism that is independent of its dsRNA binding capacity.IMPORTANCEWe use mammalian reovirus as a model to study how virus infection modulates innate immune signaling and cell death induction. Here we sought to determine how viral factors regulate these processes. Our work highlights a previously unknown role for the reovirus outer capsid protein σ3 in limiting the induction of a necrotic form of cell death called necroptosis. Induction of cell death by necroptosis requires production of interferon. σ3 limits the induction of necroptosis by preventing excessive production of interferon following infection.


Sign in / Sign up

Export Citation Format

Share Document