scholarly journals Element length calculation in B-spline meshes for complex geometries

2020 ◽  
Vol 65 (4) ◽  
pp. 1085-1103 ◽  
Author(s):  
Yuto Otoguro ◽  
Kenji Takizawa ◽  
Tayfun E. Tezduyar

AbstractVariational multiscale methods, and their precursors, stabilized methods, have been playing a core-method role in semi-discrete and space–time (ST) flow computations for decades. These methods are sometimes supplemented with discontinuity-capturing (DC) methods. The stabilization and DC parameters embedded in most of these methods play a significant role. Various well-performing stabilization and DC parameters have been introduced in both the semi-discrete and ST contexts. The parameters almost always involve some element length expressions, most of the time in specific directions, such as the direction of the flow or solution gradient. Until recently, stabilization and DC parameters originally intended for finite element discretization were being used also for isogeometric discretization. Recently, element lengths and stabilization and DC parameters targeting isogeometric discretization were introduced for ST and semi-discrete computations, and these expressions are also applicable to finite element discretization. The key stages of deriving the direction-dependent element length expression were mapping the direction vector from the physical (ST or space-only) element to the parent element in the parametric space, accounting for the discretization spacing along each of the parametric coordinates, and mapping what has been obtained back to the physical element. Targeting B-spline meshes for complex geometries, we introduce here new element length expressions, which are outcome of a clear and convincing derivation and more suitable for element-level evaluation. The new expressions are based on a preferred parametric space and a transformation tensor that represents the relationship between the integration and preferred parametric spaces. The test computations we present for advection-dominated cases, including 2D computations with complex meshes, show that the proposed element length expressions result in good solution profiles.

2020 ◽  
Vol 30 (11) ◽  
pp. 2139-2174 ◽  
Author(s):  
Yuki Ueda ◽  
Yuto Otoguro ◽  
Kenji Takizawa ◽  
Tayfun E. Tezduyar

Variational multiscale methods and their precursors, stabilized methods, which are sometimes supplemented with discontinuity-capturing (DC) methods, have been playing their core-method role in flow computations increasingly with isogeometric discretization. The stabilization and DC parameters embedded in most of these methods play a significant role. The parameters almost always involve some local-length-scale expressions, most of the time in specific directions, such as the direction of the flow or solution gradient. Until recently, local-length-scale expressions originally intended for finite element discretization were being used also for isogeometric discretization. The direction-dependent expressions introduced in [Y. Otoguro, K. Takizawa and T. E. Tezduyar, Element length calculation in B-spline meshes for complex geometries, Comput. Mech. 65 (2020) 1085–1103, https://doi.org/10.1007/s00466-019-01809-w ] target B-spline meshes for complex geometries. The key stages of deriving these expressions are mapping the direction vector from the physical element to the parent element in the parametric space, accounting for the discretization spacing along each of the parametric coordinates, and mapping what has been obtained back to the physical element. The expressions are based on a preferred parametric space and a transformation tensor that represents the relationship between the integration and preferred parametric spaces. Element splitting may be a part of the computational method in a variety of cases, including computations with T-spline discretization and immersed boundary and extended finite element methods and their isogeometric versions. We do not want the element splitting to influence the actual discretization, which is represented by the control or nodal points. Therefore, the local length scale should be invariant with respect to element splitting. In element definition, invariance of the local length scale is a crucial requirement, because, unlike the element definition choices based on implementation convenience or computational efficiency, it influences the solution. We provide a proof, in the context of B-spline meshes, for the element-splitting invariance of the local-length-scale expressions introduced in the above reference.


2015 ◽  
Vol 15 (3) ◽  
pp. 291-305 ◽  
Author(s):  
Ralf Hiptmair ◽  
Alberto Paganini

AbstractWe consider PDE constrained shape optimization in the framework of finite element discretization of the underlying boundary value problem. We present an algorithm tailored to preserve and exploit the approximation properties of the finite element method, and that allows for arbitrarily high resolution of shapes. It employs (i) B-spline based representations of the deformation diffeomorphism, and (ii) superconvergent domain integral expressions for the shape gradient. We provide numerical evidence of the performance of this method both on prototypical well-posed and ill-posed shape optimization problems.


Sign in / Sign up

Export Citation Format

Share Document