a priori error estimates
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 13)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Marita Holtmannspötter

In this paper we investigate a priori error estimates for the space-time Galerkin finite element discretization of a quasilinear gradient enhanced damage model. The model equations are of a special structure as the state equation consists of two quasilinear elliptic PDEs which have to be fulfilled at almost all times coupled with a nonsmooth, semilinear ODE that has to hold true in almost all points in space. The system is discretized by a constant discontinuous Galerkin method in time and usual conforming linear finite elements in space. Numerical experiments are added to illustrate the proven rates of convergence.


Author(s):  
Masoumeh Mohammadi ◽  
Winnifried Wollner

Abstract A control problem for a linearized time-discrete regularized fracture propagation process is considered. The discretization of the problem is done using a conforming finite element method. In contrast to many works on discretization of PDE constrained optimization problems, the particular setting has to cope with the fact that the linearized fracture equation is not necessarily coercive. A quasi-best approximation result will be shown in the case of an invertible, though not necessarily coercive, linearized fracture equation. Based on this a priori error estimates for the control, state, and adjoint variables will be derived.


Sign in / Sign up

Export Citation Format

Share Document