Peritoneal loss of insulin-like growth factor-I and binding proteins in end-stage renal disease

1998 ◽  
Vol 12 (7) ◽  
pp. 581-588 ◽  
Author(s):  
Gamze Bereket ◽  
Jen Jar Lin ◽  
Abdullah Bereket ◽  
Charles H. Lang ◽  
Frederick J. Kaskel
1999 ◽  
Vol 10 (2) ◽  
pp. 315-322
Author(s):  
LEE-YUNG SHIH ◽  
JENG-YI HUANG ◽  
CHING-TAI LEE

Abstract. Erythroid progenitor growth, the serum hormones that regulate erythropoiesis, and the effect of patient's serum on the growth of normal erythroid progenitors were assessed in eight patients with end-stage renal disease (ESRD) and erythrocytosis. All patients were male and had been on maintenance dialysis, they had a hematocrit >50% and/or a red blood cell count >6 × 1012/L and an arterial oxygen saturation >95%. Four had acquired cystic disease of the kidney (ACDK), and four other non-ACDK patients did not have known causes of secondary erythrocytosis after appropriate investigations and long-term follow-up. The methylcellulose culture technique was used to assay the erythroid progenitor (BFU-E/CFU-E) growth. Serum erythropoietin (EPO) and insulin-like growth factor I (IGF-I) levels were measured by RIA. Paired experiments were performed to determine the effects of 10% sera from ESRD patients and control subjects on normal marrow CFU-E growth. The numbers of EPO-dependent BFU-E in marrow and/or blood of patients with ESRD and erythrocytosis were higher than those of normal controls. No EPO-independent erythroid colonies were found. Serum EPO levels were constantly normal in one patient and elevated in three patients with ACDK; for non-ACDK patients, EPO levels were normal or low in two patients and persistently increased in one, but fluctuated in the remaining one on serial assays. There was no correlation between serum EPO levels and hematocrit values. The serum IGF-I levels in patients with ESRD and erythrocytosis were significantly increased compared with normal subjects or ESRD patients with anemia. We found an inverse correlation between serum EPO and IGF-I levels. Sera from patients with ESRD and erythrocytosis exhibited a stimulating effect on normal marrow CFU-E growth. The stimulating effect of sera from patients who had a normal serum EPO level and an elevated IGF-I level could be partially blocked by anti-IGF-I. The present study suggests that IGF-I plays an important role in the regulation of erythropoiesis in patients with ESRD and erythrocytosis who did not have an increased EPO production.


2000 ◽  
Vol 36 (5) ◽  
pp. 945-952 ◽  
Author(s):  
Lorenzo S. Malatino ◽  
Francesca Mallamaci ◽  
Francesco A. Benedetto ◽  
Ignazio Bellanuova ◽  
Alessandro Cataliotti ◽  
...  

1991 ◽  
Vol 128 (2) ◽  
pp. 197-204 ◽  
Author(s):  
F. J. Ballard ◽  
S. E. Knowles ◽  
P. E. Walton ◽  
K. Edson ◽  
P. C. Owens ◽  
...  

ABSTRACT Incubation of 125I-labelled insulin-like growth factor-I (IGF-I) with rat plasma at 4 °C led to the transfer of approximately half the radioactivity to 150 kDa and smaller complexes with IGF-binding proteins. The extent of association was greater with labelled IGF-II and essentially absent with the truncated IGF-I analogue, des(1–3)IGF-I. A greater degree of binding of IGF peptides with binding proteins occurred after i.v. injection of the tracers into rats, but most of the des(1–3)IGF-I radioactivity remained free. Measurement of the total plasma clearances showed the rapid removal of des(1–3)IGF-I compared with IGF-I and IGF-II; the mean clearances were 4·59, 1·20 and 1·34 ml/min per kg respectively. The mean steadystate volume of distribution was larger for des(1–3)IGF-I than for IGF-I and IGF-II (461, 167 and 181 ml/kg respectively), probably because of the differences in plasma protein binding. With all tracers, radioactivity appeared in the kidneys to a greater extent than in other organs. The amount of radioactivity found in the adrenals, brain, skin, stomach, duodenum, ileum plus jejunum and colon was in rank order, des(1–3)IGF-I > IGF-I > IGF-II. Since this ranking is the opposite of the abilities of the three IGF peptides to form complexes with plasma binding proteins, we propose that the plasma binding proteins inhibit the transfer of the growth factors to their tissue sites of action. Moreover, we suggest that IGF analogues that are cleared rapidly from blood may have greater biological potencies in vivo. Journal of Endocrinology (1991) 128, 197–204


2004 ◽  
Vol 18 (2) ◽  
pp. 237-249
Author(s):  
Nicholas J. Skelton ◽  
Michelle L. Schaffer ◽  
Kurt Deshayes ◽  
Tamas Blandl ◽  
Steven Runyon ◽  
...  

Insulin–like growth factor–I (IGF–I) is a central mediator of cell growth, differentiation and metabolism. Structural characterization of the protein has been hampered by a combination of internal dynamics and self–association that prevent crystallization and produce broad NMR resonances. To better characterize the functions of IGF–I, we have used phage display to identify peptides that antagonize the binding of IGF–I to its plasma binding proteins (IGFBPs) and cell–surface receptor (IGF–R). Interestingly, binding of peptide improves dramatically the quality of the NMR resonances of IGF–I, and enables the use of triple–resonance NMR methods to characterize the complexes. One such peptide, designated IGF–F1–1, has been studied in detail. In the complex, the peptide retains the same loop–helix motif seen in the free state whilst IGF–I contains three helices, as has been seen previously in low–resolution structures in the absence of ligand. The peptide binds at a hydrophobic patch between helix 1 and 3, a site identified previously by mutagenesis as a contact site for IGFBP1. Thus, antagonism of IGFBP1 binding exhibited by the peptide occurs by a simple steric occlusion mechanism. Antagonism of IGF–R binding may also be explained by a similar mechanism if receptor binding occurs by a two–site process, as has been postulated for insulin binding to its receptor. Comparisons with crystallographic structures determined for IGF–I in other complexes suggest that the region around helix 1 of IGF–I is conformationally conserved whereas the region around helix 3 adopts several different ligand–induced conformations. The ligand–induced structural variability of helix 3 appears to be a common feature across the insulin super–family. In the case of IGF–I, exchange between such conformations may be the source of the dynamic nature of free IGF–I, and likely has functional significance for the ability of IGF–I to recognize two signaling receptors and six binding proteins with high affinity.


Sign in / Sign up

Export Citation Format

Share Document