cell surface receptor
Recently Published Documents


TOTAL DOCUMENTS

1386
(FIVE YEARS 327)

H-INDEX

118
(FIVE YEARS 9)

2022 ◽  
Vol 119 (4) ◽  
pp. e2117576119
Author(s):  
Bo Yang ◽  
Yuanyuan Jia ◽  
Yumin Meng ◽  
Ying Xue ◽  
Kefang Liu ◽  
...  

After binding to its cell surface receptor angiotensin converting enzyme 2 (ACE2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell through directly fusing with plasma membrane (cell surface pathway) or undergoing endocytosis traveling to lysosome/late endosome for membrane fusion (endocytic pathway). However, the endocytic entry regulation by host cell remains elusive. Recent studies show ACE2 possesses a type I PDZ binding motif (PBM) through which it could interact with a PDZ domain-containing protein such as sorting nexin 27 (SNX27). In this study, we determined the ACE2-PBM/SNX27-PDZ complex structure, and, through a series of functional analyses, we found SNX27 plays an important role in regulating the homeostasis of ACE2 receptor. More importantly, we demonstrated SNX27, together with retromer complex (the core component of the endosomal protein sorting machinery), prevents ACE2/virus complex from entering lysosome/late endosome, resulting in decreased viral entry in cells where the endocytic pathway dominates. The ACE2/virus retrieval mediated by SNX27–retromer could be considered as a countermeasure against invasion of ACE2 receptor-using SARS coronaviruses.


2022 ◽  
Author(s):  
Eileen Socher ◽  
Lukas Heger ◽  
Friedrich Paulsen ◽  
Friederike Zunke ◽  
Philipp Arnold

Abstract SARS-CoV-2, the virus which causes the COVID-19 pandemic, changes frequently through the ap-pearance of mutations constantly leading to new variants. However, only few variants evolve as dominating and will be considered as “Variants of Concern” (VOCs) by the world health organization (WHO). At the end of 2020 the alpha (B.1.1.7) variant appeared in the United Kingdom and domi-nated the pandemic situation until mid of 2021 when it was substituted by the delta variant (B.1.617.2) that first appeared in India as predominant variant. At the end of 2021, SARS-CoV-2 omi-cron (B.1.1.529) evolved as the dominating variant. Here, we use in silico modeling and molecular dynamics (MD) simulations of the receptor-binding domain of the viral spike protein and the host cell surface receptor ACE2 to analyze and compare the interaction pattern between the wild type, delta and omicron variants. We identified residue 493 in delta (glutamine) and omicron (arginine) with altered binding properties towards ACE2.


2022 ◽  
Author(s):  
Javier Martínez Pacheco ◽  
Limei Song ◽  
Victoria Berdion Gabarain ◽  
Juan Manuel Peralta ◽  
Tomás Urzúa Lehuedé ◽  
...  

Root hairs (RH) are excellent model systems for studying cell size regulation since they elongate several hundred-fold their original size. Their growth is determined both by intrinsic and environmental signals. Although nutrients availability in the soil are key factors for a sustained plant growth, the molecular mechanisms underlying their perception and downstream signaling pathways remains unclear. Here, we identified that a low temperature triggers a strong RH cell elongation response involving the cell surface receptor kinase FERONIA (FER) and nutrient sensor TORC1 pathway. We found that FER is required to perceive limited nutrients availability caused by low temperature, to interacts with and activate TORC1-downstream components to trigger RH growth. Nitrates perceived and transported by NRT1.1 were found to mimic this growth response at low temperature. Our findings reveal a new molecular mechanism by which a central hub composed by FER-TORC1 controls RH cell elongation under low temperature.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Mingzhou Guo ◽  
Mengzhe Zhang ◽  
Xiaopei Cao ◽  
Xiaoyu Fang ◽  
Ke Li ◽  
...  

Abstract Background Hypoxic pulmonary hypertension (HPH) is a chronic progressive advanced disorder pathologically characterized by pulmonary vascular remodeling. Notch4 as a cell surface receptor is critical for vascular development. However, little is known about the role and mechanism of Notch4 in the development of hypoxic vascular remodeling. Methods Lung tissue samples were collected to detect the expression of Notch4 from patients with HPH and matched controls. Human pulmonary artery smooth muscle cells (HPASMCs) were cultured in hypoxic and normoxic conditions. Real-time quantitative PCR and western blotting were used to examine the mRNA and protein levels of Notch4. HPASMCs were transfected with small interference RNA (siRNA) against Notch4 or Notch4 overexpression plasmid, respectively. Cell viability, cell proliferation, apoptosis, and migration were assessed using Cell Counting Kit-8, Edu, Annexin-V/PI, and Transwell assay. The interaction between Notch4 and ERK, JNK, P38 MAPK were analyzed by co-immunoprecipitation. Adeno-associated virus 1-mediated siRNA against Notch4 (AAV1-si-Notch4) was injected into the airways of hypoxic rats. Right ventricular systolic pressure (RVSP), right ventricular hypertrophy and pulmonary vascular remodeling were evaluated. Results In this study, we demonstrate that Notch4 is highly expressed in the media of pulmonary vascular and is upregulated in lung tissues from patients with HPH and HPH rats compared with control groups. In vitro, hypoxia induces the high expression of Delta-4 and Notch4 in HPASMCs. The increased expression of Notch4 promotes HPASMCs proliferation and migration and inhibits cells apoptosis via ERK, JNK, P38 signaling pathways. Furthermore, co-immunoprecipitation result elucidates the interaction between Notch4 and ERK/JNK/P38. In vivo, silencing Notch4 partly abolished the increase in RVSP and pulmonary vascular remodeling caused by hypoxia in HPH rats. Conclusions These findings reveal an important role of the Notch4-ERK/JNK/P38 MAPK axis in hypoxic pulmonary remodeling and provide a potential therapeutic target for patients with HPH.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010176
Author(s):  
Srikanth Mairpady Shambat ◽  
Alejandro Gómez-Mejia ◽  
Tiziano A. Schweizer ◽  
Markus Huemer ◽  
Chun-Chi Chang ◽  
...  

COVID-19 displays diverse disease severities and symptoms including acute systemic inflammation and hypercytokinemia, with subsequent dysregulation of immune cells. Bacterial superinfections in COVID-19 can further complicate the disease course and are associated with increased mortality. However, there is limited understanding of how SARS-CoV-2 pathogenesis and hypercytokinemia impede the innate immune function against bacterial superinfections. We assessed the influence of COVID-19 plasma hypercytokinemia on the functional responses of myeloid immune cells upon bacterial challenges from acute-phase COVID-19 patients and their corresponding recovery (rec)-phase. We show that a severe hypercytokinemia status in COVID-19 patients correlates with the development of bacterial superinfections. Neutrophils and monocytes derived from COVID-19 patients in their acute-phase showed an impaired intracellular microbicidal capacity upon bacterial challenges. The impaired microbicidal capacity was reflected by abrogated MPO and reduced NETs production in neutrophils along with reduced ROS production in both neutrophils and monocytes. Moreover, we observed a distinct pattern of cell surface receptor expression on both neutrophils and monocytes, in line with suppressed autocrine and paracrine cytokine signaling. This phenotype was characterized by a high expression of CD66b, CXCR4 and low expression of CXCR1, CXCR2 and CD15 in neutrophils and low expression of HLA-DR, CD86 and high expression of CD163 and CD11b in monocytes. Furthermore, the impaired antibacterial effector function was mediated by synergistic effect of the cytokines TNF-α, IFN-γ and IL-4. COVID-19 patients receiving dexamethasone showed a significant reduction of overall inflammatory markers in the plasma as well as exhibited an enhanced immune response towards bacterial challenge ex vivo. Finally, broad anti-inflammatory treatment was associated with a reduction in CRP, IL-6 levels as well as length of ICU and hospital stay in critically ill COVID-19 patients. Our data provides insights into the transient functional dysregulation of myeloid immune cells against subsequent bacterial infections in COVID-19 patients and describe a beneficial role for the use of dexamethasone in these patients.


2022 ◽  
Author(s):  
Lipin Loo ◽  
Matthew Waller ◽  
Alexander Cole ◽  
Alberto Stella ◽  
Cesar Moreno ◽  
...  

Abstract Although ACE2 is the primary receptor for SARS-CoV-2 infection, a systematic assessment of factors controlling SARS-CoV-2 host interactions has not been described. Here we used whole genome CRISPR activation to identify host factors controlling SARS-CoV-2 Spike binding. The top hit was a Toll-like receptor-related cell surface receptor called leucine-rich repeat-containing protein 15 (LRRC15). LRRC15 expression was sufficient to promote SARS-CoV-2 Spike binding where it forms a cell surface complex with LRRC15 but does not support infection. Instead, LRRC15 functioned as a negative receptor suppressing both pseudotyped and live SARS-CoV-2 infection. LRRC15 is expressed in collagen-producing lung myofibroblasts where it can sequester virus and reduce infection in trans. Mechanistically LRRC15 is regulated by TGF-β, where moderate LRRC15 expression drives collagen production but high levels suppress it, revealing a novel lung fibrosis feedback circuit. Overall, LRRC15 is a master regulator of SARS-CoV-2, suppressing infection and controlling collagen production associated with “long-haul” COVID-19.


2022 ◽  
Author(s):  
Ming-hui Ji ◽  
Jia-hao Xu ◽  
Sha-sha Yuan ◽  
Ya-wen Liu ◽  
Xin-yi Xing ◽  
...  

Abstract A novel coronavirus has rapidly spread to almost every country in the world, causing over 233 million confirmed cases of coronavirus disease 2019 (COVID-19) and over 209,761,242 deaths by late September 2021. Binding the receptor binding domain (RBD) to the host cell surface receptor protein, angiotensin converter enzyme (ACE2), is a key step in virus infection. In this study, we applied a pulsed electric field to the RBD/ACE2 complex based on molecular dynamics simulation and demonstrated that the electric field affects the structure and binding affinity of the complex. Additionally, residue Y505 is the crucial medium for the effects of electric field on the complex. Overall, these results may help apply an external electric field to virus suppression.


2021 ◽  
Vol 10 (36) ◽  
pp. 142-144
Author(s):  
Lucas F De Andrade ◽  
Fernando SF Guimaraes ◽  
Gustavo Rossi ◽  
Rafael Zotz ◽  
Eneida J Da Lozzo ◽  
...  

Background: Cancer is a class of disease responsible for 13% of death cause worldwide. Among all types of cancers, one of the most aggressive and with the highest death rate is melanoma. It is highly metastatic and current treatments with chemotherapeutic drugs do not yield satisfactory results. Therefore, the interest on new therapeutics for cancer treatment has been increasing on research. Highly diluted tinctures (HDT) are intended to enhance immune system responses resulting in reduced frequency of various diseases, and often present no risk of serious side-effects due to its low toxicity. Previous results have demonstrated in vitro inhibition of invasion ability and in vivo anti-metastatic potential of B16F10 lung metastasis model after mice treatment with M8 inhalation. Aims: Now we have evaluated M8 effects on hyaluronic acid and its specific melanoma cell surface receptor (CD44) expression on lungs after inhalation by mice. Methodology: M8 compounds include Aconitum napellus 20dH, Arsenicum album 18dH, Asa foetida 20dH, Calcarea carbonica 16dH, Conium maculatum 17dH, Ipecacuanha 13dH, Phosphorus 20dH, Rhus toxicodendron 17H, Silicea 20dH, Sulphur 24dH, and Thuja occidentalis 19dH. B16F10 Melanoma cells were inoculated into C57B/L6 mouse lateral tail vein. Treatment started 24 hours after inoculation, and was repeated after each 12 hours during 14 days on an inhalation chamber that is adapted to little rodents. Mice were subjected to euthanasia by intraperitoneal injection of thiopental followed by decapitation. Lungs were surgically removed and analyzed under a stereomicroscope for the presence of metastatic foci. They were formaldehyde fixed, dehydrated and paraffin embedded. Histological sections were processed for hematoxilin/eosin (HE), Fontana-Masson and immunohistochemistry staining methods. Images were captured and blindly analysed by ImageJ (NIH) software. Results: HE and Fontana-Masson showed a reduction in number and size of metastatic nodules, as previously demonstrated. We have detected a reduction on hyaluronic acid as well as CD44 expression on mice lungs after M8 treatment. The high metastatic potential of melanoma is proportional to hyaluronic acid expression level, together with its specific cell surface receptor, the CD44. These results suggest that M8 treatment reduces malignancy of mouse melanoma through modulation of hyaluronic acid and CD44 expression, which play crucial roles in tumor invasion and growth. Conclusion: Even though further investigation are necessary to elucidate the mechanisms of action of M8 treatment there is an indication that these highly diluted tinctures could be a promising therapy to treat metastatic melanoma.


2021 ◽  
Author(s):  
Amine Driouchi ◽  
Scott Gray-Owen ◽  
Christopher M Yip

Mapping the self-organization and spatial distribution of membrane proteins is key to understanding their function. We report here on a correlated STORM/homoFRET imaging approach for resolving the nanoscale distribution and oligomeric state of membrane proteins. Live cell homoFRET imaging of CEACAM1, a cell-surface receptor known to exist in a complex equilibrium between monomer and dimer/oligomer states, revealed highly heterogenous diffraction-limited structures on the surface of HeLa cells. Correlated super-resolved STORM imaging revealed that these structures comprised a complex mixture and spatial distribution of self-associated CEACAM1 molecules. This correlated approach provides a compelling strategy for addressing challenging questions about the interplay between membrane protein concentration, distribution, interaction, clustering, and function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yang Gao ◽  
Wei Shan ◽  
Tianning Gu ◽  
Jie Zhang ◽  
Yibo Wu ◽  
...  

Graft-versus-host disease (GVHD) remains the major cause of mortality and morbidity in non-relapse patients after allogeneic hematopoietic cell transplantation (allo-HCT). As the number of patients undergoing allo-HCT increases, it will become imperative to determine safe and effective treatment options for patients with GVHD, especially those who become refractory to systemic steroid therapy. Daratumumab (Dara), a humanized IgG1 (ĸ subclass) monoclonal antibody targeting the CD38 epitope, is used for the treatment of multiple myeloma. CD38 is a multifunctional ectoenzyme that behaves either as an enzyme, a cell adhesion molecule or a cell surface receptor involved in cell signaling. CD38 is also expressed on various immune effector and suppressor cells. However, the role of CD38 in the immune response remains elusive. We questioned whether CD38 is a potential therapeutic target against alloreactive T cells in the GVHD pathological process. Here, we investigated the impact of Dara on xenogeneic GVHD (xeno-GVHD) and graft-versus-leukemia (GVL) effects in a humanized murine model of transplantation, where human peripheral blood mononuclear cells were adoptively transplanted into immunocompromised NOD.SCID.gc-null (NSG) mice. Mice receiving Dara treatment experienced less weight loss, longer survival and lower GVHD scores compared with those in the control group. Histological evaluations, flow cytometry, RNA-sequencing and RT-qPCR analysis revealed that Dara efficaciously mitigated GVHD through multiple mechanisms including inhibition of the proliferation, activation and differentiation of CD8+ cytotoxic T cells, reduced expression of cytotoxic effector molecules, pro-inflammatory cytokines, chemokines and chemoattractant receptors by T cells and promotion of immunosuppressive T cells. More importantly, Dara preserved the GVL effect in a humanized mouse model of leukemia by metabolic reprograming of T cells to promote the induction of Th17, Th1/17and Tc1/17 cells. Our findings indicate that Dara may be an attractive therapeutic option to separate GVHD from GVL effects in patients with hematopoietic malignancies receiving allo-HCT.


Sign in / Sign up

Export Citation Format

Share Document