Chaotic analysis of daily rainfall series in Koyna reservoir catchment area, India

2012 ◽  
Vol 27 (6) ◽  
pp. 1371-1381 ◽  
Author(s):  
V. Jothiprakash ◽  
T. A. Fathima
2021 ◽  
Author(s):  
Trevor Hoey ◽  
Pamela Tolentino ◽  
Esmael Guardian ◽  
Richard Williams ◽  
Richard Boothroyd ◽  
...  

<p>Assessment of flood and drought risks, and changes to these risks under climate change, is a critical issue worldwide. Statistical methods are commonly used in data-rich regions to estimate the magnitudes of river floods of specified return period at ungauged sites. However, data availability can be a major constraint on reliable estimation of flood and drought magnitudes, particularly in the Global South. Statistical flood and drought magnitude estimation methods rely on the availability of sufficiently long data records from sites that are representative of the hydrological region of interest. In the Philippines, although over 1000 locations have been identified where flow records have been collected at some time, very few records exist of over 20 years duration and only a limited number of sites are currently being gauged. We collated data from three archival sources: (1) Division of Irrigation, Surface Water Supply (SWS) (1908-22; 257 sites in total); (2) Japan International Cooperation Agency (JICA) (1955-91; 90 sites); and, (3) Bureau of Research and Standards (BRS) (1957-2018; 181 sites). From these data sets, 176 contained sufficiently long and high quality records to be analysed. Series of annual maximum floods were fit using L-moments with Weibull, Log-Pearson Type III and Generalised Logistic Distributions, the best-fit of these being used to estimate 2-, 10- and 100-year flood events, Q<sub>2</sub>, Q<sub>10</sub> and Q<sub>100</sub>. Predictive equations were developed using catchment area, several measures of annual and extreme precipitation, catchment geometry and land-use. Analysis took place nationally, and also for groups of hydrologically similar regions, based on similar flood growth curve shapes, across the Philippines. Overall, the best fit equations use a combination of two predictor variables, catchment area and the median annual maximum daily rainfall. The national equations have R<sup>2</sup> of 0.55-0.65, being higher for shorter return periods, and regional groupings R<sup>2</sup> are 0.60-0.77 for Q<sub>10</sub>. These coefficients of determination, R<sup>2</sup>, are lower than in some comprehensive studies worldwide reflecting in part the short individual flow records. Standard errors of residuals for the equations are between 0.19 and 0.51 (log<sub>10</sub> units), which lead to significant uncertainty in flood estimation for water resource and flood risk management purposes. Improving the predictions requires further analysis of hydrograph shape across the different climate types, defined by seasonal rainfall distributions, in the Philippines and between catchments of different size. The results here represent the most comprehensive study to date of flood magnitudes in the Philippines and are being incorporated into guidance for river managers alongside new assessments of river channel change across the country. The analysis illustrates the potential, and the limitations, for combining information from multiple data sources and short individual records to generate reliable estimates of flow extremes.</p>


2011 ◽  
Vol 12 (5) ◽  
pp. 1100-1112 ◽  
Author(s):  
J. Vaze ◽  
D. A. Post ◽  
F. H. S. Chiew ◽  
J.-M. Perraud ◽  
J. Teng ◽  
...  

Abstract Different methods have been used to obtain the daily rainfall time series required to drive conceptual rainfall–runoff models, depending on data availability, time constraints, and modeling objectives. This paper investigates the implications of different rainfall inputs on the calibration and simulation of 4 rainfall–runoff models using data from 240 catchments across southeast Australia. The first modeling experiment compares results from using a single lumped daily rainfall series for each catchment obtained from three methods: single rainfall station, Thiessen average, and average of interpolated rainfall surface. The results indicate considerable improvements in the modeled daily runoff and mean annual runoff in the model calibration and model simulation over an independent test period with better spatial representation of rainfall. The second experiment compares modeling using a single lumped daily rainfall series and modeling in all grid cells within a catchment using different rainfall inputs for each grid cell. The results show only marginal improvement in the “distributed” application compared to the single rainfall series, and only in two of the four models for the larger catchments. Where a single lumped catchment-average daily rainfall series is used, care should be taken to obtain a rainfall series that best represents the spatial rainfall distribution across the catchment. However, there is little advantage in driving a conceptual rainfall–runoff model with different rainfall inputs from different parts of the catchment compared to using a single lumped rainfall series, where only estimates of runoff at the catchment outlet is required.


2013 ◽  
Vol 10 (2) ◽  
pp. 2323-2352 ◽  
Author(s):  
E. Arnone ◽  
D. Pumo ◽  
F. Viola ◽  
L. V. Noto ◽  
G. La Loggia

Abstract. Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles which can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood prone areas. In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends while for longer durations the trends are mainly negative. Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the non parametric Mann–Kendall test. Particularly, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration while daily rainfall properties have been analyzed in term of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations, especially for one hour rainfall duration. Instead, precipitation of long durations have exhibited a decreased trend. With regard to the spatial distribution, increase in short duration precipitation has been observed especially in stations located along the coastline; however, no clear and well-defined spatial pattern have been outlined by the results. Outcomes of analysis for daily rainfall properties have showed that heavy-torrential precipitation tends to be more frequent at regional scale, while light rainfall events exhibited a negative trend at some sites. Values of total annual precipitations confirmed a significant negative trend, mainly due to the reduction during the winter season.


2013 ◽  
Vol 63 (2) ◽  
Author(s):  
Fadhilah Yusof ◽  
Ibrahim Lawal Kane ◽  
Zulkifli Yusop

The dependence structure of rainfall is usually very complex both in time and space. It is shown in this paper that the daily rainfall series of Ipoh and Alorsetar are affected by nonlinear characteristics of the variance often referred to as variance clustering or volatility, where large changes tend to follow large changes and small changes tend to follow small changes. In most empirical modeling of hydrological time series, the focus was on modeling and predicting the mean behavior of the time series through conventional methods of an Autoregressive Moving Average (ARMA) modeling proposed by the Box Jenkins methodology. The conventional models operate under the assumption that the series is stationary that is: constant mean and either constant variance or season-dependent variances, however, does not take into account the second order moment or conditional variance, but they form a good starting point for time series analysis. The residuals from preliminary ARIMA models derived from the daily rainfall time series were tested for ARCH behavior. The autocorrelation structure of the residuals and the squared residuals were inspected, the residuals are uncorrelated but the squared residuals show autocorrelation, the Ljung-Box test confirmed the results. McLeod-Li test and a test based on the Lagrange multiplier (LM) principle were applied to the squared residuals from ARIMA models. The results of these auxiliary tests show clear evidence to reject the null hypothesis of no ARCH effect. Hence indicates that GARCH modeling is necessary. Therefore the composite ARIMA-GARCH model captures the dynamics of the daily rainfall series in study areas more precisely. On the other hand, Seasonal ARIMA model became a suitable model for the monthly average rainfall series of the same locations treated.


2019 ◽  
Vol 137 (3-4) ◽  
pp. 2715-2729 ◽  
Author(s):  
Alba Llabrés-Brustenga ◽  
Anna Rius ◽  
Raúl Rodríguez-Solà ◽  
M. Carmen Casas-Castillo ◽  
Angel Redaño

2005 ◽  
Vol 29 ◽  
pp. 103-109 ◽  
Author(s):  
MC Gallego ◽  
JA García ◽  
JM Vaquero

2015 ◽  
Vol 76 (15) ◽  
Author(s):  
N. S. Dlamini ◽  
M. K. Rowshon ◽  
Ujjwal Sahab ◽  
A. Fikri ◽  
S. H. Lai ◽  
...  

Rainfall is an important parameter in tropical humid regions for which paddy production systems depend. A significant portion of paddy water requirements is supplied by natural rainfall. Several studies have predicted changes in rainfall patterns and in the amount of rain that may be obtainable in future owing to climate change. There is increased concern about future water availability for an important crop such as rice. Need to develop new water management tools for sustainable production is inevitable, but such tools require long-term climate data that is credible and consistent with the time. This study concerns itself with evaluating a stochastic weather generator (WGEN) model for simulating daily rainfall series. The model is assessed using long-term historical rainfall data obtained from a rice growing irrigation schemes in Malaysia. The model is based on a first-order two-state Markov chain approach which uses two transition probabilities and random number to generate rainfall series. Selected statistical properties were computed for each station and compared against those retrieved from the model after model training and testing. The results obtained from these comparisons are quite satisfactory giving confidence about the performance and future outputs from the model. The model has shown good skill in describing the rainfall occurrence process and rainfall amounts for the area. The model will be adapted in a subsequent study for downscaling and simulating effective daily rainfall series corresponding to future climate scenarios.


Sign in / Sign up

Export Citation Format

Share Document