Journal of Hydrometeorology
Latest Publications


TOTAL DOCUMENTS

2501
(FIVE YEARS 507)

H-INDEX

122
(FIVE YEARS 12)

Published By American Meteorological Society

1525-7541, 1525-755x

Abstract High-resolution historical climate grids are readily available and frequently used as inputs for a wide range of regional management and risk assessments including water supply, ecological processes, and as baseline for climate change impact studies that compare them to future projected conditions. Because historical gridded climates are produced using various methods, their portrayal of landscape conditions differ, which becomes a source of uncertainty when they are applied to subsequent analyses. Here we tested the range of values from five gridded climate datasets. We compared their values to observations from 1,231 weather stations, first using each dataset’s native scale, and then after each was rescaled to 270-meter resolution. We inputted the downscaled grids to a mechanistic hydrology model and assessed the spatial results of six hydrological variables across California, in 10 ecoregions and 11 large watersheds in the Sierra Nevada. PRISM was most accurate for precipitation, ClimateNA for maximum temperature, and TopoWx for minimum temperature. The single most accurate dataset overall was PRISM due to the best performance for precipitation and low air temperature errors. Hydrological differences ranged up to 70% of the average monthly streamflow with an average of 35% disagreement for all months derived from different historical climate maps. Large differences in minimum air temperature data produced differences in modeled actual evapotranspiration, snowpack, and streamflow. Areas with the highest variability in climate data, including the Sierra Nevada and Klamath Mountains ecoregions, also had the largest spread for Snow Water Equivalent (SWE), recharge and runoff.


Author(s):  
David Hudak ◽  
Éva Mekis ◽  
Peter Rodriguez ◽  
Bo Zhao ◽  
Zen Mariani ◽  
...  

Abstract To assess the performance of the most recent versions of the Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), namely V05 and V06, in Arctic regions, comparisons with Environment and Climate Change Canada (ECCC) Climate Network stations north of 60°N were performed. This study focuses on the IMERG monthly final products. The mean bias and mean error-weighted bias were assessed in comparison with twenty-five precipitation gauge measurements at ECCC Climate Network stations. The results of this study indicate that IMERG generally detects higher precipitation rates in the Canadian Arctic than ground-based gauge instruments, with differences ranging up to 0.05 mm h−1 and 0.04 mm h−1 for the mean bias and the mean error-weighted bias, respectively. Both IMERG versions perform similarly, except for a few stations, where V06 tends agree slightly better with ground-based measurements. IMERG’s tendency to detect more precipitation is in good agreement with findings indicating that weighing gauge measurement suffer from wind undercatch and other impairing factors, leading to lower precipitation estimates. Biases between IMERG and ground-based stations were found to be slightly larger during summer and fall, which is likely related to the increased precipitation rates during these seasons. Correlations of both versions of IMERG with the ground-based measurements are considerably lower in winter and spring than during summer and fall, which might be linked to issues that Passive Microwave (PMW) sensors encounter over ice and snow. However, high correlation coefficients with medians of 0.75-0.8 during summer and fall are very encouraging for potential future applications.


Abstract Snow is a fundamental component of global and regional water budgets, particularly in mountainous areas and regions downstream that rely on snowmelt for water resources. Land surface models (LSMs) are commonly used to develop spatially distributed estimates of snow water equivalent (SWE) and runoff. However, LSMs are limited by uncertainties in model physics and parameters, among other factors. In this study, we describe the use of model calibration tools to improve snow simulations within the Noah-MP LSM as the first step in an Observing System Simulation Experiment (OSSE). Noah-MP is calibrated against the University of Arizona (UA) SWE product over a Western Colorado domain. With spatially varying calibrated parameters, we run calibrated and default Noah-MP simulations for water years 2010-2020. By evaluating both simulations against the UA dataset, we show that calibration decreases domain averaged temporal RMSE and bias for snow depth from 0.15 to 0.13 m and from -0.036 to -0.0023 m, respectively, and improves the timing of snow ablation. Increased snow simulation performance also improves estimates of model-simulated runoff in four of six study basins, though only one has statistically significant improvement. Spatially distributed Noah-MP snow parameters perform better than default uniform values. We demonstrate that calibrating variables related to snow albedo calculations and rain-snow partitioning, among other processes, is a necessary step for creating a nature run that reasonably approximates true snow conditions for the OSSEs. Additionally, the inclusion of a snowfall scaling term can address biases in precipitation from meteorological forcing datasets, further improving the utility of LSMs for generating reliable spatiotemporal estimates of snow.


Abstract Recent years have seen growing appreciation that rapidly intensifying “flash droughts” are significant climate hazards with major economic and ecological impacts. This has motivated efforts to inventory, monitor, and forecast flash drought events. Here we consider the question of whether the term “flash drought” comprises multiple distinct classes of event, which would imply that understanding and forecasting flash droughts might require more than one framework. To do this, we first extend and evaluate a soil moisture volatility-based flash drought definition that we introduced in previous work and use it to inventory the onset dates and severity of flash droughts across the Contiguous United States (CONUS) for the period 1979-2018. Using this inventory, we examine meteorological and land surface conditions associated with flash drought onset and recovery. These same meteorological and land surface conditions are then used to classify the flash droughts based on precursor conditions that may represent predictable drivers of the event. We find that distinct classes of flash drought can be diagnosed in the event inventory. Specifically, we describe three classes of flash drought: “dry and demanding” events for which antecedent evaporative demand is high and soil moisture is low, “evaporative” events with more modest antecedent evaporative demand and soil moisture anomalies, but positive antecedent evaporative anomalies, and “stealth” flash droughts, which are different from the other two classes in that precursor meteorological anomalies are modest relative to the other classes. The three classes exhibit somewhat different geographic and seasonal distributions. We conclude that soil moisture “flash droughts” are indeed a composite of distinct types of rapidly intensifying droughts, and that flash drought analyses and forecasts would benefit from approaches that recognize the existence of multiple phenomenological pathways.


Abstract This study investigates how extreme precipitation scales with dew point temperature across the Northeast U.S., both in the observational record (1948-2020) and in a set of downscaled climate projections in the state of Massachusetts (2006-2099). Spatiotemporal relationships between dew point temperature and extreme precipitation are assessed, and extreme precipitation – temperature scaling rates are evaluated on annual and seasonal scales using non-stationary extreme value analysis for annual maxima and partial duration series, respectively. A hierarchical Bayesian model is then developed to partially pool data across sites and estimate regional scaling rates, with uncertainty. Based on the observations, the estimated annual scaling rate is 5.5% per °C, but this varies by season, with most non-zero scaling rates in summer and fall and the largest rates (∼7.3% per °C) in the summer. Dew point temperatures and extreme precipitation also exhibit the most consistent regional relationships in the summer and fall. Downscaled climate projections exhibited different scaling rates compared to the observations, ranging between -2.5 and 6.2% per °C at an annual scale. These scaling rates are related to the consistency between trends in projected precipitation and dew point temperature over the 21st century. At the seasonal scale, climate models project larger scaling rates for the winter compared to the observations (1.6% per °C). Overall, the observations suggest that extreme daily precipitation in the Northeast U.S. only thermodynamic scales with dew point temperature in the warm season, but climate projections indicate some degree of scaling is possible in the cold season under warming.


Abstract Soil temperature (ST) is one of the key variables in land-atmosphere interactions. The response of ST to atmospheric changes and subsequent influence of ST on atmosphere can be recognized as the processes of signals propagation. Understanding the storing and releasing of atmosphere signals in ST favors the improvement of climate prediction and weather forecast. However the current understanding of the lagging response of ST to atmospheric changes is very insufficient. The analysis based on observation shows that both the storage of air temperature signals in deep ST even after four months and the storage of precipitation signals in shallow ST after one month are widespread phenomena in China. Air temperature signals at 2m can propagate to the soil depths of 160 cm and 320 cm after 1 month and 2 months, respectively. The storage of antecedent air temperature and precipitation signals in ST is slightly weaker and stronger during April to September, respectively, which is related to more precipitation during growing season. The precipitation signals in ST rapidly weaken after 2 months. Moreover, the effects of accumulated precipitation and air temperature on the signal storage in ST have significant monthly variations and vary linearly with soil depth and latitude. The storage of antecedent air temperature or precipitation signals in ST exhibits an obvious decadal variation with a period of more than 50 years, and it may be resulted from the modulation of the global climate patterns which largely affect local air temperature and precipitation.


AbstractPrecipitation retrievals from passive microwave satellite observations form the basis of many widely used precipitation products, but the performance of the retrievals depends on numerous factors such as surface type and precipitation variability. Previous evaluation efforts have identified bias dependence on precipitation regime, which may reflect the influence on retrievals of recurring factors. In this study, the concept of a regime-based evaluation of precipitation from the Goddard Profiling (GPROF) algorithm is extended to cloud regimes. Specifically, GPROF V05 precipitation retrievals under four different cloud regimes are evaluated against ground radars over the United States. GPROF is generally able to accurately retrieve the precipitation associated with both organized convection and less organized storms, which collectively produce a substantial fraction of global precipitation. However, precipitation from stratocumulus systems is underestimated over land and overestimated over water. Similarly, precipitation associated with trade cumulus environments is underestimated over land, while biases over water depend on the sensor’s channel configuration. By extending the evaluation to more sensors and suppressed environments, these results complement insights previously obtained from precipitation regimes, thus demonstrating the potential of cloud regimes in categorizing the global atmosphere into discrete systems.


Abstract Changing pathways of soil moisture loss, either directly from soil (evaporation) or indirectly through vegetation (transpiration), are an indicator of ecosystem and land hydrological cycle responses to the changing climate. Based on the ratio of transpiration to evaporation, this paper investigates soil moisture loss pathway changes across China using five reanalysis-type datasets for the past and Coupled Model Intercomparison Project Phase 6 (CMIP6) climate projections for the future. The results show that across China, the ratio of vegetation transpiration to soil evaporation has generally increased across vegetated land areas, except in grasslands and croplands in North China. During 1981–2014, there was an increase by 51.4 percentage points (pps, p < 0.01) on average according to the reanalyses and by 42.7 pps according to 13 CMIP6 models. The CMIP6 projections suggest that the holistic increasing trend will continue into the 21st century at a rate of 40.8 pps for SSP585, 30.6 pps for SSP245, and –1.0 pps for SSP126 shared socioeconomic pathway scenarios for the period 2015–2100 relative to 1981–2014. Major contributions come from the increases in vegetation transpiration over the semiarid and subhumid grasslands, croplands, and forestlands under the influence of increasing temperatures and prolonged growing seasons (with twin peaks in May and October). The future increasing vegetation transpiration ratio in soil moisture loss implies the potential of regional greening across China under global warming and the risks of intensifying land surface dryness and altering the coupling between soil moisture and climate in regions with water-limited ecosystems.


Abstract Precipitation microphysics are critical for precipitation estimation and forecasting in numerical models. Using six years of observations from the Global Precipitation Measurement satellite, the spatial characteristics of precipitation microphysics are examined during the summer monsoon season over the Yangtze–Huaihe River valley. The results indicate that the heaviest convective rainfall is located mainly between the Huaihe and Yangtze Rivers, associated with a smaller mass-weighted mean diameter (Dm = ∼1.65 mm) and a larger mean generalized intercept parameter (Nw) (∼41 dBNw) at 2 km in altitude than those over the surrounding regions. Further, the convection in this region also has the lowest polarization-corrected temperature at 89 GHz (PCT89 < 254 K), indicating high concentrations of ice-hydrometeors. For a given rainfall intensity, stratiform precipitation is characterized by a smaller mean Dm than convective precipitation. Below 4.5 km in altitude, the vertical slope of medium reflectivity factor varies with the rainfall intensity, which decreases slightly downwards for light rain (< 2.5 mm h−1), increases slightly for moderate rain (2.5–7.9 mm h−1), and increases more sharply for heavy rain (≥8 mm h−1) for both convective and stratiform precipitation. The increase in the amplitude of heavy rain for stratiform precipitation is much higher than that for convective precipitation, probably due to more efficient growth by warm rain processes. The PCT89 values have a greater potential to inform the near-surface microphysical parameters in convective precipitation compared with stratiform precipitation.


Abstract A globally consistent ground validation method for remotely sensed precipitation products is crucial for building confidence in these products. This study develops a new methodology to validate the IMERG precipitation products through the use of SMAP soil moisture changes as a proxy for precipitation occurrence. Using a standard 2x2 contingency table method, preliminary results provide confidence in SMAP’s ability to be utilized as a validation tool for IMERG as results are comparable to previous validation studies. However, the method allows for an overestimate of false alarm frequency due to light precipitation events that can evaporate before the subsequent SMAP overpass and changes in overpass-to-overpass SMAP soil moisture that are within the range of SMAP uncertainty. To counter these issues, a 3x3 contingency table is used to reduce noise and extract more signal from the detection method. Through the use of this novel approach, the validation method produces a global mean POD of 0.64 and global mean FAR of 0.40, the first global-scale ground validation skill scores for the IMERG products. Advancing the method to validate precipitation quantity and the development of a real-time validation for the IMERG Early product are the crucial next developments.


Sign in / Sign up

Export Citation Format

Share Document