scholarly journals Conceptual Rainfall–Runoff Model Performance with Different Spatial Rainfall Inputs

2011 ◽  
Vol 12 (5) ◽  
pp. 1100-1112 ◽  
Author(s):  
J. Vaze ◽  
D. A. Post ◽  
F. H. S. Chiew ◽  
J.-M. Perraud ◽  
J. Teng ◽  
...  

Abstract Different methods have been used to obtain the daily rainfall time series required to drive conceptual rainfall–runoff models, depending on data availability, time constraints, and modeling objectives. This paper investigates the implications of different rainfall inputs on the calibration and simulation of 4 rainfall–runoff models using data from 240 catchments across southeast Australia. The first modeling experiment compares results from using a single lumped daily rainfall series for each catchment obtained from three methods: single rainfall station, Thiessen average, and average of interpolated rainfall surface. The results indicate considerable improvements in the modeled daily runoff and mean annual runoff in the model calibration and model simulation over an independent test period with better spatial representation of rainfall. The second experiment compares modeling using a single lumped daily rainfall series and modeling in all grid cells within a catchment using different rainfall inputs for each grid cell. The results show only marginal improvement in the “distributed” application compared to the single rainfall series, and only in two of the four models for the larger catchments. Where a single lumped catchment-average daily rainfall series is used, care should be taken to obtain a rainfall series that best represents the spatial rainfall distribution across the catchment. However, there is little advantage in driving a conceptual rainfall–runoff model with different rainfall inputs from different parts of the catchment compared to using a single lumped rainfall series, where only estimates of runoff at the catchment outlet is required.

Hydrology ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 32 ◽  
Author(s):  
Nag ◽  
Biswal

Construction of flow duration curves (FDCs) is a challenge for hydrologists as most streams and rivers worldwide are ungauged. Regionalization methods are commonly followed to solve the problem of discharge data scarcity by transforming hydrological information from gauged basins to ungauged basins. As a consequence, regionalization-based FDC predictions are not very reliable where discharge data are scarce quantitatively and/or qualitatively. In such a scenario, it is perhaps more meaningful to use a calibration-free rainfall‒runoff model that can exploit easily available meteorological information to predict FDCs in ungauged basins. This hypothesis is tested in this study by comparing a well-known regionalization-based model, the inverse distance weighting (IDW) model, with the recently proposed calibration-free dynamic Budyko model (DB) in a region where discharge observations are not only insufficient quantitatively but also show apparent signs of observational errors. The DB model markedly outperformed the IDW model in the study region. Furthermore, the IDW model’s performance sharply declined when we randomly removed discharge gauging stations to test the model in a variety of data availability scenarios. The analysis here also throws some light on how errors in observational datasets and drainage area influence model performance and thus provides a better picture of the relative strengths of the two models. Overall, the results of this study support the notion that a calibration-free rainfall‒runoff model can be chosen to predict FDCs in discharge data-scarce regions. On a philosophical note, our study highlights the importance of process understanding for the development of meaningful hydrological models.


2020 ◽  
Vol 24 (6) ◽  
pp. 2981-2997
Author(s):  
Stephen P. Charles ◽  
Francis H. S. Chiew ◽  
Nicholas J. Potter ◽  
Hongxing Zheng ◽  
Guobin Fu ◽  
...  

Abstract. Realistic projections of changes to daily rainfall frequency and magnitude, at catchment scales, are required to assess the potential impacts of climate change on regional water supply. We show that quantile–quantile mapping (QQM) bias-corrected daily rainfall from dynamically downscaled WRF simulations of current climate produce biased hydrological simulations, in a case study for the state of Victoria, Australia (237 629 km2). While the QQM bias correction can remove bias in daily rainfall distributions at each 10 km × 10 km grid point across Victoria, the GR4J rainfall–runoff model underestimates runoff when driven with QQM bias-corrected daily rainfall. We compare simulated runoff differences using bias-corrected and empirically scaled rainfall for several key water supply catchments across Victoria and discuss the implications for confidence in the magnitude of projected changes for mid-century. Our results highlight the imperative for methods that can correct for temporal and spatial biases in dynamically downscaled daily rainfall if they are to be suitable for hydrological projection.


2001 ◽  
Vol 5 (4) ◽  
pp. 554-562 ◽  
Author(s):  
R. Ragab ◽  
D. Moidinis ◽  
J. Albergel ◽  
J. Khouri ◽  
A. Drubi ◽  
...  

Abstract. The objective of this work was to assess the performance of the newly developed HYDROMED model. Three catchments with hill reservoirs were selected. They are El-Gouazine and Kamech in Tunisia and Es Sindiany in Syria. The rainfall, the spillway flow and volume of water in the reservoirs were used as input to the model. Events that generated spillway flow were preferred for calibration. The results confirmed that the HYDROMED model is capable of reproducing the runoff volume at all the three sites. In calibrating single events, the model performance was high as measured by the Nash-Sutcliffe criterion for goodness of fit. In some events this value was as high as 98%. In simulation mode, the highest Nash-Sutcliffe criterion value was close to 70% in the El-Gouazine and Kamech catchments and close to 50% in the Es Sindiany catchment. Given the limited information available, especially on the unrecorded releases in the three catchments, the hydrological impact of site geology (e.g. Kamech), the unrecorded operator intervention during the spillway flow (e.g. Es Sindiany) and other unaccounted factors (e.g siltation, evaporation, etc.), these results are by and large very encouraging. However, they could be further improved as and when more information on the unrecorded parameters becomes available. Additionally, the results of this work highlighted the need for long term records with a large number of significant events that are able to generate spillway flow to obtain more consistent and reliable parameter values. It also highlights the need for more accurately recorded releases for irrigation and other uses. As these results are encouraging, more tests on those three and other sites are planned. Keywords: HYDROMED, rainfall-runoff model, Mediterranean, conceptual model


2017 ◽  
Vol 10 (1) ◽  
pp. 197-209 ◽  
Author(s):  
Y. Osman ◽  
N. Al-Ansari ◽  
M. Abdellatif

Abstract The northern region of Iraq heavily depends on rivers, such as the Greater Zab, for water supply and irrigation. Thus, river water management in light of future climate change is of paramount importance in the region. In this study, daily rainfall and temperature obtained from the Greater Zab catchment, for 1961–2008, were used in building rainfall and evapotranspiration models using LARS-WG and multiple linear regressions, respectively. A rainfall–runoff model, in the form of autoregressive model with exogenous factors, has been developed using observed flow, rainfall and evapotranspiration data. The calibrated rainfall–runoff model was subsequently used to investigate the impacts of climate change on the Greater Zab flows for the near (2011–2030), medium (2046–2065), and far (2080–2099) futures. Results from the impacts model showed that the catchment is projected to suffer a significant reduction in total annual flow in the far future; with more severe drop during the winter and spring seasons in the range of 25 to 65%. This would have serious ramifications for the current agricultural activities in the catchment. The results could be of significant benefits for water management planners in the catchment as they can be used in allocating water for different users in the catchment.


2010 ◽  
Vol 41 (2) ◽  
pp. 134-144
Author(s):  
Marie-Laure Segond ◽  
Howard S. Wheater ◽  
Christian Onof

A simple and practical spatial–temporal disaggregation scheme to convert observed daily rainfall to hourly data is presented, in which the observed sub-daily temporal profile available at one gauge is applied linearly to all sites over the catchment to reproduce the spatially varying daily totals. The performance of the methodology is evaluated using an event-based, semi-distributed, nonlinear hydrological rainfall–runoff model to test the suitability of the disaggregation scheme for UK conditions for catchment sizes of 80–1,000 km2. The joint procedure is tested on the Lee catchment, UK, for five events from a 12 year period of data from 16 rain gauges and 12 flow stations. The disaggregation scheme generally performs extremely well in reproducing the simulated flow for the natural catchments, although, as expected, performance deteriorates for localized convective rainfall. However, some reduction in performance occurs when the catchments are artificially urbanised.


2007 ◽  
Vol 11 (2) ◽  
pp. 703-710 ◽  
Author(s):  
A. Bárdossy

Abstract. The parameters of hydrological models for catchments with few or no discharge records can be estimated using regional information. One can assume that catchments with similar characteristics show a similar hydrological behaviour and thus can be modeled using similar model parameters. Therefore a regionalisation of the hydrological model parameters on the basis of catchment characteristics is plausible. However, due to the non-uniqueness of the rainfall-runoff model parameters (equifinality), a workflow of regional parameter estimation by model calibration and a subsequent fit of a regional function is not appropriate. In this paper a different approach for the transfer of entire parameter sets from one catchment to another is discussed. Parameter sets are considered as tranferable if the corresponding model performance (defined as the Nash-Sutclife efficiency) on the donor catchment is good and the regional statistics: means and variances of annual discharges estimated from catchment properties and annual climate statistics for the recipient catchment are well reproduced by the model. The methodology is applied to a set of 16 catchments in the German part of the Rhine catchments. Results show that the parameters transfered according to the above criteria perform well on the target catchments.


Sign in / Sign up

Export Citation Format

Share Document