The Turán Number Of The Fano Plane

COMBINATORICA ◽  
2005 ◽  
Vol 25 (5) ◽  
pp. 561-574 ◽  
Author(s):  
Peter Keevash ◽  
Benny Sudakov*
Keyword(s):  
2021 ◽  
Vol 37 (3) ◽  
pp. 919-932
Author(s):  
Byeong Moon Kim ◽  
Byung Chul Song ◽  
Woonjae Hwang

Author(s):  
Matija Bucić ◽  
Nemanja Draganić ◽  
Benny Sudakov
Keyword(s):  

Abstract The Turán number ex(n, H) of a graph H is the maximal number of edges in an H-free graph on n vertices. In 1983, Chung and Erdős asked which graphs H with e edges minimise ex(n, H). They resolved this question asymptotically for most of the range of e and asked to complete the picture. In this paper, we answer their question by resolving all remaining cases. Our result translates directly to the setting of universality, a well-studied notion of finding graphs which contain every graph belonging to a certain family. In this setting, we extend previous work done by Babai, Chung, Erdős, Graham and Spencer, and by Alon and Asodi.


2021 ◽  
Vol 98 ◽  
pp. 103416
Author(s):  
Linyuan Lu ◽  
Zhiyu Wang
Keyword(s):  

2020 ◽  
Vol 343 (8) ◽  
pp. 111924
Author(s):  
Bo Ning ◽  
Jian Wang
Keyword(s):  

10.37236/2471 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Craig Timmons

Let $F$ be a graph.  A graph $G$ is $F$-free if it does not contain $F$ as a subgraph.  The Turán number of $F$, written $\textrm{ex}(n,F)$, is the maximum number of edges in an $F$-free graph with $n$ vertices.  The determination of Turán numbers of bipartite graphs is a challenging and widely investigated problem.  In this paper we introduce an ordered version of the Turán problem for bipartite graphs.  Let $G$ be a graph with $V(G) = \{1, 2, \dots , n \}$ and view the vertices of $G$ as being ordered in the natural way.  A zig-zag $K_{s,t}$, denoted $Z_{s,t}$, is a complete bipartite graph $K_{s,t}$ whose parts $A = \{n_1 < n_2 < \dots < n_s \}$ and $B = \{m_1 < m_2 < \dots < m_t \}$ satisfy the condition $n_s < m_1$.  A zig-zag $C_{2k}$ is an even cycle $C_{2k}$ whose vertices in one part precede all of those in the other part.  Write $\mathcal{Z}_{2k}$ for the family of zig-zag $2k$-cycles.  We investigate the Turán numbers $\textrm{ex}(n,Z_{s,t})$ and $\textrm{ex}(n,\mathcal{Z}_{2k})$.  In particular we show $\textrm{ex}(n, Z_{2,2}) \leq \frac{2}{3}n^{3/2} + O(n^{5/4})$.  For infinitely many $n$ we construct a $Z_{2,2}$-free $n$-vertex graph with more than $(n - \sqrt{n} - 1) + \textrm{ex} (n,K_{2,2})$ edges.


10.37236/1525 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Yair Caro ◽  
Raphael Yuster

For a graph $G$ whose degree sequence is $d_{1},\ldots ,d_{n}$, and for a positive integer $p$, let $e_{p}(G)=\sum_{i=1}^{n}d_{i}^{p}$. For a fixed graph $H$, let $t_{p}(n,H)$ denote the maximum value of $e_{p}(G)$ taken over all graphs with $n$ vertices that do not contain $H$ as a subgraph. Clearly, $t_{1}(n,H)$ is twice the Turán number of $H$. In this paper we consider the case $p>1$. For some graphs $H$ we obtain exact results, for some others we can obtain asymptotically tight upper and lower bounds, and many interesting cases remain open.


10.37236/3142 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Hong Liu ◽  
Bernard Lidicky ◽  
Cory Palmer

The Turán number of a graph $H$, $\mathrm{ex}(n,H)$, is the maximum number of edges in a graph on $n$ vertices which does not have $H$ as a subgraph. We determine the Turán number and find the unique extremal graph for forests consisting of paths when $n$ is sufficiently large. This generalizes a result of Bushaw and Kettle [Combinatorics, Probability and Computing 20:837--853, 2011]. We also determine the Turán number and extremal graphs for forests consisting of stars of arbitrary order.


2013 ◽  
Vol 27 (2) ◽  
pp. 910-917
Author(s):  
John Goldwasser ◽  
Ryan Hansen
Keyword(s):  

COMBINATORICA ◽  
2019 ◽  
Vol 39 (5) ◽  
pp. 961-982 ◽  
Author(s):  
Louis Bellmann ◽  
Christian Reiher

Sign in / Sign up

Export Citation Format

Share Document