scholarly journals A Finitary Structure Theorem for Vertex-Transitive Graphs of Polynomial Growth

COMBINATORICA ◽  
2021 ◽  
Author(s):  
Romain Tessera ◽  
Matthew C. H. Tointon
2013 ◽  
Vol 05 (02) ◽  
pp. 239-250
Author(s):  
HILARY FINUCANE

In this paper, we consider the Voronoi decompositions of an arbitrary infinite vertex-transitive graph G. In particular, we are interested in the following question: what is the largest number of Voronoi cells that must be infinite, given sufficiently (but finitely) many Voronoi sites which are sufficiently far from each other? We call this number the survival number s(G). The survival number of a graph has an alternative characterization in terms of the number of balls of radius r-1 required to cover a sphere of radius r. The survival number is not a quasi-isometry invariant, but it remains open whether finiteness of s(G) is. We show that all vertex-transitive graphs with polynomial growth have finite s(G); vertex-transitive graphs with infinitely many ends have infinite s(G); the lamplighter graph LL(Z), which has exponential growth, has finite s(G); and the lamplighter graph LL(Z2), which is Liouville, has infinite s(G).


2008 ◽  
Vol 15 (03) ◽  
pp. 379-390 ◽  
Author(s):  
Xuesong Ma ◽  
Ruji Wang

Let X be a simple undirected connected trivalent graph. Then X is said to be a trivalent non-symmetric graph of type (II) if its automorphism group A = Aut (X) acts transitively on the vertices and the vertex-stabilizer Av of any vertex v has two orbits on the neighborhood of v. In this paper, such graphs of order at most 150 with the basic cycles of prime length are investigated, and a classification is given for such graphs which are non-Cayley graphs, whose block graphs induced by the basic cycles are non-bipartite graphs.


1994 ◽  
Vol 3 (4) ◽  
pp. 435-454 ◽  
Author(s):  
Neal Brand ◽  
Steve Jackson

In [11] it is shown that the theory of almost all graphs is first-order complete. Furthermore, in [3] a collection of first-order axioms are given from which any first-order property or its negation can be deduced. Here we show that almost all Steinhaus graphs satisfy the axioms of almost all graphs and conclude that a first-order property is true for almost all graphs if and only if it is true for almost all Steinhaus graphs. We also show that certain classes of subgraphs of vertex transitive graphs are first-order complete. Finally, we give a new class of higher-order axioms from which it follows that large subgraphs of specified type exist in almost all graphs.


2013 ◽  
Vol 50 ◽  
pp. 465-477 ◽  
Author(s):  
Primož Potočnik ◽  
Pablo Spiga ◽  
Gabriel Verret

Sign in / Sign up

Export Citation Format

Share Document