Development of a New Recycling Process for High Zinc Containing Steel Mill Dusts including a Detailed Characterization of an Electric Arc Furnace Dust

2012 ◽  
Vol 157 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Gerald Schneeberger ◽  
Jürgen Antrekowitsch ◽  
Christoph Pichler
2006 ◽  
Vol 136 (3) ◽  
pp. 953-960 ◽  
Author(s):  
J MACHADO ◽  
F BREHM ◽  
C MORAES ◽  
C SANTOS ◽  
A VILELA ◽  
...  

2014 ◽  
Vol 798-799 ◽  
pp. 594-598
Author(s):  
Vicente de Paulo Ferreira Marques Sobrinho ◽  
José Roberto de Oliveira ◽  
Estéfano Aparecido Vieira ◽  
Victor Bridi Telles ◽  
Felipe Fardin Grillo ◽  
...  

This research aims to assess the incorporation of mass of the electric arc furnace dust (EAFD) by addition in hot metal (1.78% Si) at a temperature of 1,400°C changing the type of the crucible. The EAFD is from a steel mill producer of long steel. The EAFD will be added in the form of briquette. Previously, the EAFD is going to be characterized using the following techniques: chemical analysis, size analysis, X-ray diffraction, scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) microanalysis. The achievement of fusion experiments in laboratory scale, is going to take place in a vertical tubular furnace with temperature control. The fusion experiments to assess the incorporation of the EAFD mass are going to use three kinds of crucibles. After cooling the furnace to room temperature, it will be done the hot metal and the slag weighing to do a mass balance. A flow of inert gas (argon) is going to be maintained inside the furnace during the experiments.


2015 ◽  
Vol 820 ◽  
pp. 588-593
Author(s):  
Vicente de Paulo Ferreira Marques Sobrinho ◽  
José Roberto de Oliveira ◽  
Estéfano Aparecido Vieira ◽  
Victor Bridi Telles ◽  
Felipe Fardin Grillo ◽  
...  

This research aims to assess the incorporation of mass of the electric arc furnace dust (EAFD) by addition in hot metal produced in a local foundry (1.78% Si) at a temperature of 1,350°C. The EAFD is from a steel mill producer of long steel. The EAFD was added in the form of briquettes. Previously, the EAFD was characterized using the following techniques: chemical analysis, size analysis, X-ray diffraction, scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) microanalysis. The achievement of fusion experiments in laboratory scale, took place in a vertical tubular furnace with temperature control. The fusion experiments to assess the incorporation of the EAFD mass used alumina crucibles. A flow of inert gas (argon) was maintained inside the furnace during the experiments. After cooling the furnace to room temperature, it was done the pig iron and the slag were weighed to do a mass balance to assess the efficiency of the experiments.


2015 ◽  
Vol 656-657 ◽  
pp. 428-433
Author(s):  
Sureerat Polsilapa ◽  
Piyakarnt Khamsriraphap ◽  
Panyawat Wangyao

Electric arc furnace dust is a byproduct from steelmaking, contained up to 50%wt of zinc ferrite. It also contains about 10-20%wt of zinc oxide and the other metal oxides. Approximately 100,000 tons of EAF dust are generated per annum within Thailand. All of the dust has been sent to landfill. The objective of this research is to investigate the kinetics mechanism of the decomposition of zinc ferrite in EAF dust to obtain zinc oxide and iron oxide by using iron powder as a reducing agent. The process was carried out by mixing zinc ferrite or EAF dust with iron powder then compressed them in a mold. The samples from compression were treated by pyrometallurgical process. The factors required to be concerned were temperatures, particle sizes of iron powder, and mole ratios of zinc ferrite per iron powder, respectively. The treated samples were analyzed by X-ray diffraction (XRD) in order to characterize zinc ferrite phase transformation. It was found that the quantity of zinc ferrite, both either pure zinc ferrite and zinc ferrite in EAF dust, were decreased after treating by the pyrometallurgical process when increasing treating time from 30 to 180 minutes at 600°C, the particle size of iron powder at 10 micron, and the mole ratio of zinc ferrite per iron powder at 1:3. Moreover about 70%wt of zinc ferrite was decomposed and the products obtained were zinc oxides (ZnO) and iron oxides (Fe3O4, FeO, Fe2O3). The reduction of zinc ferrite with iron powder was well-defined taking place by diffusion thru product layer control. The activation energy of the reduction process was found to be 47.21±2.83 kJ/mol. Therefore, the decomposition of zinc ferrite by iron powder could be carried out at 1 atm with low pyrometallurgical temperature (600°C) and equipped with hydrometallurgical process to obtain high zinc yield.


Sign in / Sign up

Export Citation Format

Share Document