morphological characterization
Recently Published Documents





2022 ◽  
Vol 21 (2) ◽  
pp. 586-595
Sulaiman ABDULSALAM ◽  
Huan PENG ◽  
Shi-ming LIU ◽  
Wen-kun HUANG ◽  
Ling-an KONG ◽  

2022 ◽  
Vol 23 (2) ◽  
pp. 971
Juliana S. Ribeiro ◽  
Eliseu A. Münchow ◽  
Ester A. F. Bordini ◽  
Nathalie S. Rodrigues ◽  
Nileshkumar Dubey ◽  

This study aimed at engineering cytocompatible and injectable antibiotic-laden fibrous microparticles gelatin methacryloyl (GelMA) hydrogels for endodontic infection ablation. Clindamycin (CLIN) or metronidazole (MET) was added to a polymer solution and electrospun into fibrous mats, which were processed via cryomilling to obtain CLIN- or MET-laden fibrous microparticles. Then, GelMA was modified with CLIN- or MET-laden microparticles or by using equal amounts of each set of fibrous microparticles. Morphological characterization of electrospun fibers and cryomilled particles was performed via scanning electron microscopy (SEM). The experimental hydrogels were further examined for swelling, degradation, and toxicity to dental stem cells, as well as antimicrobial action against endodontic pathogens (agar diffusion) and biofilm inhibition, evaluated both quantitatively (CFU/mL) and qualitatively via confocal laser scanning microscopy (CLSM) and SEM. Data were analyzed using ANOVA and Tukey’s test (α = 0.05). The modification of GelMA with antibiotic-laden fibrous microparticles increased the hydrogel swelling ratio and degradation rate. Cell viability was slightly reduced, although without any significant toxicity (cell viability > 50%). All hydrogels containing antibiotic-laden fibrous microparticles displayed antibiofilm effects, with the dentin substrate showing nearly complete elimination of viable bacteria. Altogether, our findings suggest that the engineered injectable antibiotic-laden fibrous microparticles hydrogels hold clinical prospects for endodontic infection ablation.

2022 ◽  
Vol 8 (1) ◽  
pp. 87
Hua Zheng ◽  
Zefen Yu ◽  
Xinwei Jiang ◽  
Linlin Fang ◽  
Min Qiao

Colletotrichum species are plant pathogens, saprobes, and endophytes in many economically important hosts. Many studies have investigated the diversity and pathogenicity of Colletotrichum species in common ornamentals, fruits, and vegetables. However, Colletotrichum species occurring in aquatic plants are not well known. During the investigation of the diversity of endophytic fungi in aquatic plants in southwest China, 66 Colletotrichum isolates were obtained from aquatic plants there, and 26 of them were selected for sequencing and analyses of actin (ACT), chitin synthase (CHS-1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the internal transcribed spacer (ITS) region, and β-tubulin (TUB2) genomic regions. Based on morphological characterization and multi-locus phylogenetic analyses, 13 Colletotrichum species were recognized, namely, C. baiyuense sp. nov., C. casaense sp. nov., C. demersi sp. nov., C. dianense sp. nov., C. fructicola, C. garzense sp. nov., C. jiangxiense, C. karstii, C. philoxeroidis sp. nov., C. spicati sp. nov., C. tengchongense sp. nov., C. vulgaris sp. nov., C. wuxuhaiense sp. nov. Two species complexes, the C. boninense species complex and C. gloeosporioides species complex, were found to be associated with aquatic plants. Pathogenicity tests revealed a broad diversity in pathogenicity and aggressiveness among the eight new Colletotrichum species.

Phycology ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 86-108
Boer Bao ◽  
Skye R. Thomas-Hall ◽  
Peer M. Schenk

Microalgae contain high-value biochemical compounds including fatty acids (FA), protein and carotenoids, and are promising bioresources to enhance nutrition of food and animal feed. Important requirements for commercial strains are rapid growth and high productivities of desirable compounds. As these traits are believed to be found in aquatic environments with fluctuating conditions, we collected microalgae from marine and freshwater environments that are subjected to eutrophication and/or tidal fluctuations. Using this directed approach, 40 monoalgal cultures were isolated and 25 identified through 18S rDNA sequencing and morphological characterization. Based on their high growth rates (0.28–0.60 day−1) and biomass productivities (0.25–0.44 g L−1day−1) in commercial fertilizer under standardized conditions, six new strains were selected. Scenedesmus sp. GW63 produced quality FA-rich biomass with high omega-3 polyunsaturated FA (28.5% of total FA (TFA)) contents, especially α-linolenic acid (ALA; 20.0% of TFA) with a very low n-6/n-3 ratio (0.4), and high FA productivity (32.6 mg L−1 day−1). A high protein productivity (34.5 mg L−1 day−1) made Desmodesmus sp. UQL1_26 (33.4% of dry weight (DW)) attractive as potential protein-rich feed and nutrition supplement. Monoraphidium convolutum GW5 displayed valuable carotenoid production (0.8% DW) with high carotenoid accumulation capability (0.8 mg L−1 day−1). This research provides a pathway for fast-tracking the selection of high-performing local microalgae from different environments for nutraceuticals, functional foods and animal feed applications.

2022 ◽  
Vol 2 ◽  
Sefinew Tilahun ◽  
Marye Alemu ◽  
Mesfin Tsegaw ◽  
Nega Berhane

Ginger diseases caused by fungal pathogens have become one of the most serious problems causing reduced production around the world. It has also caused a major problem among farmers in different parts of Ethiopia resulting in a huge decline in rhizome yield. However, the exact causative agents of this disease have not been identified in the state. Although there are few studies related to pathogenic fungus identification, molecular level identification of fungal pathogen was not done in the area. Therefore, this study was undertaken to isolate and characterized the fungal causative agent of ginger disease from the diseased plant and the soil samples collected around the diseased plant from Chilga district, Gondar, Ethiopia. Samples from infected ginger plants and the soil around the infected plant were collected. Culturing and purification of isolates were made using Potato Dextrose Agar supplemented with antibacterial agent chloramphenicol. The morphological characterization was done by structural identification of the isolates under the microscope using lactophenol cotton blue stains. Isolated fungi were cultured and molecular identification was done using an internal transcribed spacer (ITS) of ribosomal DNA (rDNA). A total of 15 fungal morphotypes including 11 Aspergillus spp. (73.3%), 2 Penicillium spp. (13.3%), and single uncultured fungus clone S23 were isolated from the samples representing all the plant organs and the soil. Aspergillus spp. (73.3%) was the most common and seems to be the major causative agent. To the best of our knowledge, this is the first report of ginger pathogenic fungi in Ethiopia identified using ITS rDNA molecular techniques. This study will lay foundation for the development of management strategies for fungal diseases infecting ginger.

2022 ◽  
Vol 8 (1) ◽  
pp. 76
Wen-Li Li ◽  
Sajeewa S. N. Maharachchikumbura ◽  
Ratchadawan Cheewangkoon ◽  
Jian-Kui Liu

Pleurotremataceae species are saprobes on decaying wood in terrestrial, mangrove, and freshwater habitats. The generic boundary of the family has traditionally been based on morphology. All genera of Pleurotremataceae have a high degree of morphological overlap, of which the generic circumscription of Melomastia and Dyfrolomyces has not been well resolved. Thus, the delimitation of genera has always been challenging. Melomastia traditionally differs from Dyfrolomyces in having 2-septate, oblong, with obtuse-ends ascospores. These main characteristics have been used to distinguish Melomastia from Dyfrolomyces for a long time. However, the above characteristics sometimes overlap among Dyfrolomyces and Melomastia species. Based on the morphology and multigene phylogeny with newly obtained data, we synonymized Dyfrolomyces under Melomastia following up-to-date results. Four novel species (i.e., Melomastia fusispora, M. oleae, M. sichuanensis and M. winteri) collected from the dead branches of Olea europaea L. in Chengdu Olive Base, Sichuan Province in China are introduced based on detailed morphological characterization and phylogenetic analyses of sequences based on nuclear ribosomal (LSU and SSU) and protein-coding gene (tef1-α). The 11 new combinations proposed are Melomastia aquatica (= Dyfrolomyces aquaticus), M. chromolaenae (= D. chromolaenae), M. distoseptata (= D. distoseptatus), M. mangrovei (= D. mangrovei), M. marinospora (= D. marinosporus), M. neothailandica (= D. neothailandicus), M. phetchaburiensis (= D. phetchaburiensis), M. sinensis (= D. sinensis), M. thailandica (= D. thailandica), M. thamplaensis (= D. thamplaensis) and M. tiomanensis (= D. tiomanensis).

2022 ◽  
Tianxiang Liu ◽  
Yulin Sun ◽  
Chao Ma ◽  
Wenhui Jiang ◽  
Hongqi Wu ◽  

Abstract Bread wheat (Triticum aestivum L.) is an important source of nutrients for humans. Therefore, improvement of its yields is essential to feed the increasing world population. The tri-pistil (TRP) trait in wheat has a high potential for increasing yields. We obtained a pure tri-pistil wheat line, 4045, and evaluated its morphological properties. The 4045 wheat line stably produced three independently inherited pistils, which led to 1-3 grains in each floret. Among the three pistils, two lately emerged pistils initiated at late anther primordia stage to early tetrads stage. Genetic analysis revealed that there were TRP penetrance variations among the 11 F1 populations of 4045. Fine mapping narrowed the single dominant TRP locus to a 97.3 kb region, containing two candidate genes, on the 2DL chromosome. However, further gene sequence, functional as well as comparative genomic analyses ruled out the only two candidate genes. Therefore, TRP is high-likely a unique gain-of-function mutation that does not exist in normal wheat genome. Transcriptome analysis of floral homeotic genes revealed that expressions of the C-class TaAG-2s, which are essential for carpel specification, significantly increased in 4045, implying that TaAG-2s have played important roles in TRP-regulated tri-pistil formation. This study highlights that TRP leads to a precisely regulated pistil number increase (PRPNI) mutations and proposed a regulatory model of PRPNI pistil architecture. PRPNI offers a novel abnormal pistil development resource for research of floral architectures and potential on crop yield improvement.


This paper is focused on the analysis of the morphological and thermal properties of the biomedical composites, polylactic acid (PLA) and polycaprolactone (PCL) matrix, reinforced with basalt fibers (BFs) and using halloysite nanotubes (HNT) as filler material. Four different composites, viz. PPHB 1, PPHB 2, PPHB 3 and PPHB 4, are obtained by varying the weight fractions of these materials using twin-screw extrusion followed by injection molding. The morphological characterization is performed on these composites using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. SEM reveals homogenous and strong bonding between the matrix, reinforcement and filler. The BF are well embedded in the matrix with a random orientation. No formation of voids and cracks is observed. The functional groups present and the types of vibration experienced by the chemical bonds were observed in the FTIR spectra. The composites are subjected to thermal testing such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The PPHB 2, which contains 80% PLA, 10% BF, 7% PCL and 3% HNT, has the highest degree of crystallinity, as revealed by DSC, and exhibits the most optimum thermal degradation characteristics as indicated by TGA.

2022 ◽  
Vol 43 (1) ◽  
pp. 449-458
Danilo Conrado Silva ◽  
Maria Clorinda Soares Fioravanti ◽  
Paulo José Bastos Queiroz ◽  
Marcelo Corrêa da Silva ◽  

This study aimed to carry out the morphological characterization of the remaining specimens of the Curraleiro horse in municipalities of the state of Goiás, Brazil. Forty male horses were evaluated using the age of five years as a criterion. Sixteen linear measurements and 13 zootechnical indices were obtained. Subsequently, the mean, standard deviation, minimum, maximum, and covariances of these measures and indices were obtained using the software IBM SPSS Statistics for Windows. The measures withers height (WH), croup height (CH), midback height (MH), sternum-to-ground height (SH), chest index (CI), and estimated weight (W) allowed characterizing Curraleiro horses as small-sized, light, and fast, with proportional measures. The dactyl-thoracic index (DTI), body index (BI), conformation index (CFI), load index 1 and 2 (LOI1 and LOI2), and compactness index 1 and 2 (COI1 and COI2) showed that the Curraleiro horse has an intermediate capacity for speed and strength, bearing considerable weight on the back, with saddling aptitude and fast work. These results represent the beginning of the formation of a database that may contribute to future studies and the conservation of the Curraleiro horse in the state of Goiás.

2022 ◽  
Vol 5 (1) ◽  
pp. 90
Maria Kouroutzi ◽  
Antonios Stratidakis ◽  
Marianthi Kermenidou ◽  
Spyros Karakitsios ◽  
Dimosthenis Sarigiannis

A novel roofing tile was developed containing various types of nanoparticles of titanium dioxide (TiO2). Experiments were conducted using three types of TiO2 nanoparticles with and without polyethylene glycol (PEG). All types of newly developed nanomaterials were characterized using X-ray diffractometry. Particle size distribution analysis was performed and specific surface area was determined using the Brunauer–Emmet–Teller method. SEM imaging was used for the morphological characterization of nanoparticles. Commercial ceramic roofing tiles underwent a dip-coating procedure to obtain the desired photocatalytic surface. The TiO2 anatase samples exhibited greater surface areas of nanoparticles, thus providing potentially the highest photocatalytic efficiency.

Sign in / Sign up

Export Citation Format

Share Document