Performance evaluation of a strain-gauge force sensor for a haptic robot-assisted catheter operating system

2017 ◽  
Vol 23 (10) ◽  
pp. 5041-5050 ◽  
Author(s):  
Linshuai Zhang ◽  
Shuxiang Guo ◽  
Huadong Yu ◽  
Yu Song
2018 ◽  
Vol 20 (2) ◽  
Author(s):  
Yu Song ◽  
Shuxiang Guo ◽  
Xuanchun Yin ◽  
Linshuai Zhang ◽  
Hideyuki Hirata ◽  
...  

2018 ◽  
Vol 160 (2) ◽  
pp. 320-325 ◽  
Author(s):  
Christopher R. Razavi ◽  
Paul R. Wilkening ◽  
Rui Yin ◽  
Nicolas Lamaison ◽  
Russell H. Taylor ◽  
...  

Objectives To describe a 3D-printed middle ear model that quantifies the force applied to the modeled incus. To compare the forces applied during placement and crimping of a stapes prosthesis between the Robotic ENT Microsurgery System ( REMS) and the freehand technique in this model. Study Design Prospective feasibility study. Setting Robotics laboratory. Subjects and Methods A middle ear model was designed and 3D printed to facilitate placement and crimping of a piston prosthesis. The modeled incus was mounted to a 6–degree of freedom force sensor to measure forces/torques applied on the incus. Six participants—1 fellowship-trained neurotologist, 2 neurotology fellows, and 3 otolaryngology–head and neck surgery residents—placed and crimped a piston prosthesis in this model, 3 times freehand and 3 times REMS assisted. Maximum force applied to the incus was then calculated for prosthesis placement and crimping from force/torque sensor readings for each trial. Robotic and freehand outcomes were compared with a linear regression model. Results Mean maximum magnitude of force during prosthesis placement was 126.4 ± 73.6 mN and 105.0 ± 69.4 mN for the freehand and robotic techniques, respectively ( P = .404). For prosthesis crimping, the mean maximum magnitude of force was 469.3 ± 225.2 mN for the freehand technique and 272.7 ± 97.4 mN for the robotic technique ( P = .049). Conclusions Preliminary data demonstrate that REMS-assisted stapes prosthesis placement and crimping are feasible with a significant reduction in maximum force applied to the incus during crimping with the REMS in comparison with freehand.


2015 ◽  
Vol 798 ◽  
pp. 319-323
Author(s):  
Ali Reza Hassan Beiglou ◽  
Javad Dargahi

It has been more than 20 years that robot-assisted minimally invasive surgery (RMIS) has brought remarkable accuracy and dexterity for surgeons along with the decreasing trauma for the patients. In this paper a novel method of the tissue’s surface profile mapping is proposed. The tissue surface profile plays an important role for material identification during RMIS. It is shown how by integrating the force feedback into robot controller the surface profile of the tissue can be obtained with force feedback scanning. The experiment setup includes a 5 degree of freedoms (DOFs) robot which is equipped with a strain-gauge ball caster as the force feedback. Robot joint encoders signals and the captured force signal of the strain-gauge are transferred to developed surface transformation algorithm (STA). The real-time geometrical transformation process is triggered with force signal to identify contact points between the ball caster and the artificial tissue. The 2D surface profile of tissue will be mapped based on these contact points. Real-time capability of the proposed system is evaluated experimentally for the artifical tissues in a designed test rig.


Sensor Review ◽  
2018 ◽  
Vol 38 (2) ◽  
pp. 248-258
Author(s):  
Gobi K. ◽  
Kannapiran B. ◽  
Devaraj D. ◽  
Valarmathi K.

Purpose The conventional strain gauge type pressure sensor suffers in static testing of engines due to the contact transduction method. This paper aims to focus on the concept of non-contact transduction-based pressure sensor using eddy current displacement sensing coil (ECDS) to overcome the temperature limitations of the strain gauge type pressure sensor. This paper includes the fabrication of prototypes of the proposed pressure sensor and its performance evaluation by static calibration. The fabricated pressure sensor is proposed to measure pressure in static test environment for a short period in the order of few seconds. The limitations of the fabricated pressure sensor related to temperature problems are highlighted and the suitable design changes are recommended to aid the future design. Design/methodology/approach The design of ECDS-based pressure sensor is aimed to provide non-contact transduction to overcome the limitations of the strain gauge type of pressure sensor. The ECDS is designed and fabricated with two configurations to measure deflection of the diaphragm corresponding to the applied pressure. The fabricated ECDS is calibrated using a standard micro meter to ensure transduction within limits. The fabricated prototypes of pressure sensors are calibrated using dead weight tester, and the calibration results are analyzed to select the best configuration. The proposed pressure sensor is tested at different temperatures, and the test results are analyzed to provide recommendations to overcome the shortcomings. Findings The performance of the different configurations of the pressure sensor using ECDS is evaluated using the calibration data. The analysis of the calibration results indicates that the pressure sensor using ECDS (coil-B) with the diaphragm as target is the best configuration. The accuracy of the fabricated pressure sensor with best configuration is ±2.8 per cent and the full scale (FS) output is 3.8 KHz. The designed non-contact transduction method extends the operating temperature of the pressure sensor up to 150°C with the specified accuracy for the short period. Originality/value Most studies of eddy current sensing coil focus on the displacement and position measurement but not on the pressure measurement. This paper is concerned with the design of the pressure sensor using ECDS to realize the non-contact transduction to overcome the limitations of strain gauge type pressure sensors and evaluation of the fabricated prototypes. It is shown that the accuracy of the proposed pressure sensor is not affected by the high temperature for the short period due to non-contact transduction using ECDS.


2006 ◽  
Vol 130-131 ◽  
pp. 75-82 ◽  
Author(s):  
E. Peiner ◽  
A. Tibrewala ◽  
R. Bandorf ◽  
S. Biehl ◽  
H. Lüthje ◽  
...  

2013 ◽  
Vol 284-287 ◽  
pp. 2575-2579 ◽  
Author(s):  
Wen Yew Liang ◽  
Ming Feng Chang ◽  
Yen Lin Chen ◽  
Jenq Haur Wang

Dynamic voltage and frequency scaling (DVFS) is an effective technique for reducing power consumption. The system performance is not easy to evaluate through Dynamic Voltage and Frequency Scaling. Most of studies use the execution time as an indicator while measuring the performance. However, DVFS adjusted processor speed during a fixed-length period so it cannot rely on the execution time to evaluate the system performance. This study proposes a novel and simple performance evaluation method to evaluate the system performance when DVFS is activated. Based on the performance evaluation method, this study also proposes a DVFS algorithm (P-DVFS) for a general-purpose operating system. The algorithm has been implemented on the Linux operating system and used a PXA270 development board. The results show that P-DVFS could accurately predict the suitable frequency, given runtime statistics information of a running program. In this way, the user can easily control the energy consumption by specifying allowable performance loss factor.


Sign in / Sign up

Export Citation Format

Share Document